WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

Regularization

is an option for Sum and Product that specifies what type of regularization to use.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Applications  
See Also
History
Cite this Page

Regularization

is an option for Sum and Product that specifies what type of regularization to use.

Details

  • Regularization affects only results for divergent sums and products.
  • The following settings can be used to specify regularization procedures for sums of the form :
  • "Abel"
    "Borel"
    "Cesaro"
    "Dirichlet"
  • For alternating sums , the setting "Euler" gives .
  • The following setting can be used to specify a regularization procedure for products :
  • "Dirichlet"
  • Regularization->None specifies that no regularization should be used.
  • For multiple sums and products, the same regularization is by default used for each variable.
  • Regularization->{reg1,reg2,} specifies regularization regi for the i^(th) variable.

Examples

open all close all

Basic Examples  (3)

The following sum does not converge:

Using Abel regularization will produce a finite value:

In this case the Abel-regularized sum does not exist:

However, the stronger Borel regularization produces a finite value:

A regularized value of a divergent product:

Scope  (5)

Apply Abel regularization to sum a divergent polynomial-exponential series:

Use Borel regularization to sum a divergent hypergeometric series:

Apply Cesaro regularization to sum a divergent trigonometric series:

Sum a divergent logarithmic series using Dirichlet regularization:

Apply Euler regularization to sum a divergent geometric series:

Applications  (1)

The regularized sum of all the natural numbers is :

Wolfram Research (2008), Regularization, Wolfram Language function, https://reference.wolfram.com/language/ref/Regularization.html.

Text

Wolfram Research (2008), Regularization, Wolfram Language function, https://reference.wolfram.com/language/ref/Regularization.html.

CMS

Wolfram Language. 2008. "Regularization." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Regularization.html.

APA

Wolfram Language. (2008). Regularization. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Regularization.html

BibTeX

@misc{reference.wolfram_2025_regularization, author="Wolfram Research", title="{Regularization}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/Regularization.html}", note=[Accessed: 16-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_regularization, organization={Wolfram Research}, title={Regularization}, year={2008}, url={https://reference.wolfram.com/language/ref/Regularization.html}, note=[Accessed: 16-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /