WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

Max [x1,x2,]

yields the numerically largest of the xi.

Max [{x1,x2,},{y1,},]

yields the largest element of any of the lists.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Function Properties  
Differentiation and Integration  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

Max

Max [x1,x2,]

yields the numerically largest of the xi.

Max [{x1,x2,},{y1,},]

yields the largest element of any of the lists.

Details

Examples

open all close all

Basic Examples  (3)

Maximum of two numbers:

Maximum of a list:

Plot over a subset of the reals:

Scope  (29)

Numerical Evaluation  (7)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Evaluate efficiently at high precision:

The maximum of all elements of a matrix:

The maxima of all rows:

The maxima of all columns:

For Interval objects, Max gives the maximum element in all intervals:

For CenteredInterval objects, Max [Δ1,Δ2] gives an interval containing Max [a1,a2] for any aiΔi:

Compute average-case statistical intervals using Around :

Compute the elementwise values of an array using automatic threading:

Or compute the matrix Max function using MatrixFunction :

Specific Values  (5)

Values of Max at fixed points:

Values at infinity:

Evaluate symbolically:

Solve equations and inequalities:

Find a value of x for which Max [{Sin [x],Cos [x]}]1:

Visualization  (3)

Plot the Max of several functions:

Plot Max in three dimensions:

Plot Max of two functions in three dimensions:

Function Properties  (9)

Max is only defined for real-valued inputs:

The range of Max is all real numbers:

Max effectively flattens out all lists:

Basic symbolic simplification is done automatically:

Additional simplification can be done using Simplify :

Multi-argument Max is generally not an analytic function:

It will have singularities where the arguments cross, but it will be continuous:

Max can have any monotonicity depending on its arguments:

is not surjective:

Max can have any sign depending on its arguments:

Differentiation and Integration  (5)

First derivative with respect to x:

Higher derivatives with respect to x:

Formula for the ^(th) derivative with respect to x:

Compute the indefinite integral using Integrate :

Verify the anti-derivative:

Definite integrals:

Applications  (5)

Use in bounds of iterator variables:

Cumulative maxima:

Find the highest point of a plotted curve:

Mean of the length ratio of a randomly broken stick:

Rfunction-based solid modeling:

Properties & Relations  (6)

With no arguments, Max returns -Infinity :

Max is Flat and Orderless :

Use PiecewiseExpand to express Max and Min as explicit cases:

Use FullSimplify to simplify Max expressions:

Maximize a function containing Max :

Max can be differentiated:

Possible Issues  (2)

Max flattens lists, rather than being Listable :

The oneargument form evaluates for any argument:

Neat Examples  (2)

Two-dimensional sublevel sets:

Three-dimensional sublevel sets:

History

Introduced in 1988 (1.0) | Updated in 2003 (5.0) 2021 (13.0)

Wolfram Research (1988), Max, Wolfram Language function, https://reference.wolfram.com/language/ref/Max.html (updated 2021).

Text

Wolfram Research (1988), Max, Wolfram Language function, https://reference.wolfram.com/language/ref/Max.html (updated 2021).

CMS

Wolfram Language. 1988. "Max." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/Max.html.

APA

Wolfram Language. (1988). Max. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Max.html

BibTeX

@misc{reference.wolfram_2025_max, author="Wolfram Research", title="{Max}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/Max.html}", note=[Accessed: 16-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_max, organization={Wolfram Research}, title={Max}, year={2021}, url={https://reference.wolfram.com/language/ref/Max.html}, note=[Accessed: 16-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /