WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

InverseJacobiSC [v,m]

gives the inverse Jacobi elliptic function .

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Show More Show More
Function Properties  
Differentiation and Integration  
Series Expansions  
Function Identities and Simplifications  
Other Features  
Applications  
Properties & Relations  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

InverseJacobiSC [v,m]

gives the inverse Jacobi elliptic function .

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • gives the value of u for which .
  • InverseJacobiSC has branch cut discontinuities in the complex v plane with branch points at and infinity, and in the complex m plane with branch points at and infinity.
  • The inverse Jacobi elliptic functions are related to elliptic integrals.
  • For certain special arguments, InverseJacobiSC automatically evaluates to exact values.
  • InverseJacobiSC can be evaluated to arbitrary numerical precision.
  • InverseJacobiSC automatically threads over lists.

Examples

open all close all

Basic Examples  (4)

Evaluate numerically:

Plot the function over a subset of the reals:

Plot over a subset of the complexes:

Series expansions at the origin:

Scope  (29)

Numerical Evaluation  (5)

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Evaluate for complex arguments:

Evaluate InverseJacobiSC efficiently at high precision:

Compute average-case statistical intervals using Around :

Compute the elementwise values of an array:

Or compute the matrix InverseJacobiSC function using MatrixFunction :

Specific Values  (4)

Simple exact results are generated automatically:

Values at infinity:

Find a real root of the equation TemplateBox[{x, {1, /, 3}}, InverseJacobiSC]=1:

Parity transformation is automatically applied:

Visualization  (3)

Plot InverseJacobiSC for various values of the second parameter :

Plot InverseJacobiSC as a function of its parameter :

Plot the real part of TemplateBox[{z, 2}, InverseJacobiSC]:

Plot the imaginary part of TemplateBox[{z, 2}, InverseJacobiSC]:

Function Properties  (6)

InverseJacobiSC is not an analytic function:

It has both singularities and discontinuities:

TemplateBox[{x, 3}, InverseJacobiSC] is nondecreasing on its real domain:

TemplateBox[{x, {1, /, 3}}, InverseJacobiSC] is injective:

TemplateBox[{x, 3}, InverseJacobiSC] is not surjective:

TemplateBox[{x, {1, /, 3}}, InverseJacobiSC] is neither non-negative nor non-positive:

TemplateBox[{x, {1, /, 3}}, InverseJacobiSC] is neither convex nor concave:

Differentiation and Integration  (4)

First derivative:

Higher derivatives:

Plot higher derivatives for :

Differentiate InverseJacobiSC with respect to the second argument :

Definite integral of an odd function over an interval centered at the origin is 0:

Series Expansions  (3)

Taylor expansion for TemplateBox[{nu, m}, InverseJacobiSC] around :

Plot the first three approximations for TemplateBox[{nu, 2}, InverseJacobiSC] around :

Taylor expansion for TemplateBox[{nu, m}, InverseJacobiSC] around :

Plot the first three approximations for TemplateBox[{nu, m}, InverseJacobiSC] around :

InverseJacobiSC can be applied to a power series:

Function Identities and Simplifications  (2)

InverseJacobiSC is the inverse function of JacobiSC :

Compose with inverse function:

Use PowerExpand to disregard multivaluedness of the inverse function:

Other Features  (2)

InverseJacobiSC threads elementwise over lists:

TraditionalForm formatting:

Applications  (2)

Plot contours of constant real and imaginary parts in the complex plane:

Construct lowpass elliptic filter for analog signal:

Compute filter ripple parameters and associate elliptic function parameter:

Use elliptic degree equation to find the ratio of the pass and the stop frequencies:

Compute corresponding stop frequency and elliptic parameters:

Compute ripple locations and poles and zeros of the transfer function:

Compute poles of the transfer function:

Assemble the transfer function:

Compare with the result of EllipticFilterModel :

Properties & Relations  (1)

Obtain InverseJacobiSC from solving equations containing elliptic functions:

History

Introduced in 1988 (1.0)

Wolfram Research (1988), InverseJacobiSC, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseJacobiSC.html.

Text

Wolfram Research (1988), InverseJacobiSC, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseJacobiSC.html.

CMS

Wolfram Language. 1988. "InverseJacobiSC." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseJacobiSC.html.

APA

Wolfram Language. (1988). InverseJacobiSC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseJacobiSC.html

BibTeX

@misc{reference.wolfram_2025_inversejacobisc, author="Wolfram Research", title="{InverseJacobiSC}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/InverseJacobiSC.html}", note=[Accessed: 16-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_inversejacobisc, organization={Wolfram Research}, title={InverseJacobiSC}, year={1988}, url={https://reference.wolfram.com/language/ref/InverseJacobiSC.html}, note=[Accessed: 16-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /