WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

FindGeneratingFunction [{a0,a1,},x]

attempts to find a simple generating function in x whose n^(th) series coefficient is an.

FindGeneratingFunction [{{n0,a0},{n1,a1},},x]

attempts to find a simple generating function whose ni^(th) series coefficient is ai.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Generalizations & Extensions  
Properties & Relations  
See Also
Related Guides
Related Links
History
Cite this Page

FindGeneratingFunction [{a0,a1,},x]

attempts to find a simple generating function in x whose n^(th) series coefficient is an.

FindGeneratingFunction [{{n0,a0},{n1,a1},},x]

attempts to find a simple generating function whose ni^(th) series coefficient is ai.

Details and Options

  • The sequence elements an can be either exact numbers or symbolic expressions.
  • FindGeneratingFunction finds results in terms of a wide range of integer functions, as well as implicit solutions to difference equations represented by DifferenceRoot .
  • If FindGeneratingFunction cannot find a simple generating function that yields the specified sequence, it returns unevaluated.
  • FindGeneratingFunction has the following options:
  • FunctionSpace Automatic where to look for candidate simple generating functions
    Method Automatic method to use
    TimeConstraint 10 how many seconds to search a particular function space or perform a transformation
    ValidationLength Automatic sequence length used to validate a candidate generating function found
  • FindGeneratingFunction [list,x] by default uses earlier elements in list to find candidate simple generating functions, then validates the generating functions by looking at later elements.
  • FindGeneratingFunction [list,x] only returns functions that correctly reproduce all elements of list.

Examples

open all close all

Basic Examples  (2)

Find a generating function for a sequence:

A periodic sequence:

Scope  (2)

Rational functions:

Hypergeometric functions:

Generalizations & Extensions  (1)

FindGeneratingFunction works on arbitrary exact numbers or symbolic expressions:

Properties & Relations  (1)

Use FindSequenceFunction to find a generating function of a sequence:

Verify:

Wolfram Research (2008), FindGeneratingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/FindGeneratingFunction.html.

Text

Wolfram Research (2008), FindGeneratingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/FindGeneratingFunction.html.

CMS

Wolfram Language. 2008. "FindGeneratingFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FindGeneratingFunction.html.

APA

Wolfram Language. (2008). FindGeneratingFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindGeneratingFunction.html

BibTeX

@misc{reference.wolfram_2025_findgeneratingfunction, author="Wolfram Research", title="{FindGeneratingFunction}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/FindGeneratingFunction.html}", note=[Accessed: 16-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_findgeneratingfunction, organization={Wolfram Research}, title={FindGeneratingFunction}, year={2008}, url={https://reference.wolfram.com/language/ref/FindGeneratingFunction.html}, note=[Accessed: 16-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /