WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

CepstrumArray [data]

computes the power cepstrum of data.

CepstrumArray [data,type]

computes the specified type of cepstrum of data.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Applications  
See Also
Related Guides
History
Cite this Page

CepstrumArray [data]

computes the power cepstrum of data.

CepstrumArray [data,type]

computes the specified type of cepstrum of data.

Details and Options

  • Cepstral analysis has been used for characterization of echoes, separation of convolved signals and pitch detection application in signal processing.
  • Real cepstrum is computed as the inverse Fourier transform of the log-magnitude Fourier spectrum.
  • The data can be any of the following:
  • list arbitrary rank numerical or Quantity array
    audio an Audio or Sound object
    image arbitrary Image or Image3D object
    video a Video object
  • The type specification can be either of the following:
  • "Power" |F^(-1)log(TemplateBox[{{F, (, data, )}}, Abs]^2)|^2
    "Real" TemplateBox[{Re, paclet:ref/Re}, RefLink, BaseStyle -> {2ColumnTableMod}](F^(-1)log(TemplateBox[{{F, (, data, )}}, Abs]))
  • For multichannel images and audio signals, CepstrumArray is returned separately on each channel.
  • CepstrumArray accepts the FourierParameters option. The default setting is FourierParameters->{1,-1}.

Examples

open all close all

Basic Examples  (2)

Cepstrum of a list:

Cepstrum of an Audio object:

Plot of the power cepstrum:

Scope  (7)

Real cepstrum of a list:

Cepstrum of a 2D list:

Compute the cepstrum of a Sound :

Cepstrum of a multichannel Audio object:

The cepstrum is computed separately on each channel:

Compute the cepstrum of the audio track of a video object:

Cepstrum of an Image object:

Plot of the power cepstrum:

Cepstrum of a multichannel image:

The cepstrum is computed separately on each channel:

Applications  (3)

Detect the effect of a comb filer on a signal:

The signal only has two sinusoidal components:

A comb filter with delay of 31 samples is applied:

It is not easy to identify the periodicity of the comb filter by using conventional spectral analysis:

Since the cepstrum of a convolution is the sum of the cepstra of the two components, it is easier to identify the peak caused by the comb filter:

Measure the time constant of an echo:

Compute the logarithm of the cepstrum, and discard the second half (the real cepstrum is symmetric):

Find the peaks:

Plot the result:

Select the position of the biggest peak:

Compute the period by dividing the quefrency by the sample rate:

Detect the pitch of a recording:

In harmonic sounds, the pitch does not correspond to the biggest peak in the spectrum:

Compute the cepstrum and discard the symmetric part:

Find the peaks and display the result:

The peak corresponding to zero quefrency is discarded, and the biggest peak is selected:

Compute the fundamental frequency by dividing the sample rate by the quefrency:

Check the result:

Wolfram Research (2017), CepstrumArray, Wolfram Language function, https://reference.wolfram.com/language/ref/CepstrumArray.html (updated 2024).

Text

Wolfram Research (2017), CepstrumArray, Wolfram Language function, https://reference.wolfram.com/language/ref/CepstrumArray.html (updated 2024).

CMS

Wolfram Language. 2017. "CepstrumArray." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2024. https://reference.wolfram.com/language/ref/CepstrumArray.html.

APA

Wolfram Language. (2017). CepstrumArray. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CepstrumArray.html

BibTeX

@misc{reference.wolfram_2025_cepstrumarray, author="Wolfram Research", title="{CepstrumArray}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/CepstrumArray.html}", note=[Accessed: 17-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_cepstrumarray, organization={Wolfram Research}, title={CepstrumArray}, year={2024}, url={https://reference.wolfram.com/language/ref/CepstrumArray.html}, note=[Accessed: 17-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /