Array [f,n]
generates a list of length n, with elements f[i].
Array [f,n,r]
generates a list using the index origin r.
Array [f,n,{a,b}]
generates a list using n values from a to b.
Array [f,{n1,n2,…}]
generates an n1×n2×… array of nested lists, with elements f[i1,i2,…].
Array [f,{n1,n2,…},{r1,r2,…}]
generates a list using the index origins ri (default 1).
Array [f,{n1,n2,…},{{a1,b1},{a2,b2},…}]
generates a list using ni values from ai to bi.
Array
Array [f,n]
generates a list of length n, with elements f[i].
Array [f,n,r]
generates a list using the index origin r.
Array [f,n,{a,b}]
generates a list using n values from a to b.
Array [f,{n1,n2,…}]
generates an n1×n2×… array of nested lists, with elements f[i1,i2,…].
Array [f,{n1,n2,…},{r1,r2,…}]
generates a list using the index origins ri (default 1).
Array [f,{n1,n2,…},{{a1,b1},{a2,b2},…}]
generates a list using ni values from ai to bi.
Details
- Parallelize [Array[f,n]] computes Array [f,n] in parallel on all subkernels. »
Examples
open all close allBasic Examples (4)
Generate a 3×2 array:
Generate a 3×4 array:
Use index origin 0 instead of 1:
Start with indices 0 and 4 instead of 1:
Sample between 0 and 1:
Use ranges {-1/2,1/2} and {0,1}:
Scope (11)
Array Element Specification (5)
Create a 3×2 array using an indexed symbol:
Create a 4×4 array using a subscript:
Create a Hilbert matrix:
Use named function slots:
Compare with the built-in function:
Create a constant array:
Use ## to pick up a sequence of indices:
Index Specification (4)
Create a 1D array:
Create a 1D array, starting the indices at 0:
Create a 3×2 array:
Create a 4×3×2 array with index-dependent origins:
Applications (4)
Totally antisymmetric tensor:
Compare with the built-in LeviCivitaTensor :
Lower-triangular matrix:
Matrix with generic symbolic entries:
Use it to see the effects of some linear algebra functions:
Sample a function uniformly on an interval:
Properties & Relations (4)
ConstantArray [c,dims] and Array [c&,dims] are equivalent:
When c is a machine number, ConstantArray is much faster for large arrays:
Array [f,dims] can be generated using Table :
Set up the Table limit specifications:
Use Apply to splice them into a Table command:
The result is identical to the array generated using Array :
SparseArray [{i_,j_}->f[i,j],dims] gives a sparse representation of Array [f,dims]:
The results are Equal :
The objects are not identical, but the represented arrays are:
Compute Array in parallel:
Neat Examples (3)
Array of powers:
Array of GCDs:
Array of arrays:
See Also
Table ConstantArray SparseArray Grid ArrayPlot Tuples ArrayFlatten
Tech Notes
Related Guides
Related Workflows
- Create a Matrix ▪
- Make a Grid of Output Data
History
Introduced in 1988 (1.0) | Updated in 1999 (4.0) ▪ 2000 (4.1) ▪ 2002 (4.2) ▪ 2012 (9.0)
Text
Wolfram Research (1988), Array, Wolfram Language function, https://reference.wolfram.com/language/ref/Array.html (updated 2012).
CMS
Wolfram Language. 1988. "Array." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2012. https://reference.wolfram.com/language/ref/Array.html.
APA
Wolfram Language. (1988). Array. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Array.html
BibTeX
@misc{reference.wolfram_2025_array, author="Wolfram Research", title="{Array}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/Array.html}", note=[Accessed: 17-November-2025]}
BibLaTeX
@online{reference.wolfram_2025_array, organization={Wolfram Research}, title={Array}, year={2012}, url={https://reference.wolfram.com/language/ref/Array.html}, note=[Accessed: 17-November-2025]}