WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

Activate [expr]

replaces all instances of Inactive [f] in expr with f.

Activate [expr,patt]

replaces only instances of Inactive [f] for which f matches the pattern patt.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Options  
Heads  
Applications  
Properties & Relations  
Neat Examples  
See Also
Related Guides
Related Workflows
History
Cite this Page

Activate [expr]

replaces all instances of Inactive [f] in expr with f.

Activate [expr,patt]

replaces only instances of Inactive [f] for which f matches the pattern patt.

Details and Options

  • With the option setting Heads->False , Activate does not enter heads of expressions and activate their parts.

Examples

open all close all

Basic Examples  (2)

Activate an Inactive expression:

Activate different parts of an inactive expression:

Scope  (7)

Define an inactive expression:

Evaluate the expression using Activate :

Create an inactive expression using Inactivate :

Evaluate the expression:

Inactivate the symbol g only:

Activate g:

Inactivate g and h:

Activate h:

Activate an inactive expression:

Activate all symbols except Integrate :

Prevent numeric functions from being activated:

Formally differentiating a Laplace transform:

Similarly differentiating wrt t and a:

Inactive special function expression:

Expression after automatic simplification:

Options  (1)

Heads  (1)

An inactive Derivative expression:

Activate the expression:

Use the option setting Heads->False to avoid activating Derivative :

Applications  (5)

Define a trigonometric expression with two inactive terms:

Activate different parts of the expression:

Define , leaving both the derivative and integral inactive:

Differentiate the integral without evaluating the integral:

Activate the integral to compute the final result:

Integrate without performing the differentiation:

Activate the differentiation to compute the final result:

The results are mathematically the same:

Solution for the three-dimensional Laplace equation in inactive integral form:

Obtain a particular solution by specifying the function f:

Visualize the solution:

Verify the solution:

Formula for summation by parts:

Verify the formula in a special case:

Evaluate the sum:

Explore vector identities:

Activating Curl is not very interesting:

Activating Div demonstrates the relation TemplateBox[{{(, TemplateBox[{v, }, Curl], )}, }, Div]=0:

Properties & Relations  (4)

Inactive expressions can be evaluated using Activate :

Activate is the inverse of Inactivate :

Activate replaces all instances of inactive symbols in an expression:

Activate evaluates inactive expressions and allows parts of expressions to be inactive:

ReleaseHold evaluates expressions held in unevaluated form, and all parts are evaluated:

Neat Examples  (1)

Create a gallery of infinite products:

Related Workflows

Wolfram Research (2014), Activate, Wolfram Language function, https://reference.wolfram.com/language/ref/Activate.html.

Text

Wolfram Research (2014), Activate, Wolfram Language function, https://reference.wolfram.com/language/ref/Activate.html.

CMS

Wolfram Language. 2014. "Activate." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Activate.html.

APA

Wolfram Language. (2014). Activate. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Activate.html

BibTeX

@misc{reference.wolfram_2025_activate, author="Wolfram Research", title="{Activate}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/Activate.html}", note=[Accessed: 16-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_activate, organization={Wolfram Research}, title={Activate}, year={2014}, url={https://reference.wolfram.com/language/ref/Activate.html}, note=[Accessed: 16-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /