US6987795B1 - System and method for selecting spreading codes based on multipath delay profile estimation for wireless transceivers in a communication network - Google Patents
System and method for selecting spreading codes based on multipath delay profile estimation for wireless transceivers in a communication network Download PDFInfo
- Publication number
- US6987795B1 US6987795B1 US10/117,179 US11717902A US6987795B1 US 6987795 B1 US6987795 B1 US 6987795B1 US 11717902 A US11717902 A US 11717902A US 6987795 B1 US6987795 B1 US 6987795B1
- Authority
- US
- United States
- Prior art keywords
- transmission channel
- spreading code
- spreading
- multipath delay
- delay profile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 230000007480 spreading Effects 0.000 title claims abstract description 79
- 238000004891 communication Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000005540 biological transmission Effects 0.000 claims description 41
- 238000005311 autocorrelation function Methods 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000001228 spectrum Methods 0.000 abstract description 5
- 230000006870 function Effects 0.000 description 15
- 230000000737 periodic effect Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 230000001934 delay Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 102100022846 Histone acetyltransferase KAT2B Human genes 0.000 description 1
- 101001047006 Homo sapiens Histone acetyltransferase KAT2B Proteins 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/16—Code allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/711—Interference-related aspects the interference being multi-path interference
- H04B1/7113—Determination of path profile
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/707—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
- H04B2201/7097—Direct sequence modulation interference
- H04B2201/709709—Methods of preventing interference
Definitions
- the present invention relates to a system and method for adapting spreading codes to the transmission channel medium in communication networks. Specifically, the present invention relates to a system and method for selecting an optimum spreading code for Direct-Sequence Spread-Spectrum (DSSS) node communication, based upon information gathered about the radio-frequency link between nodes, such that interpath interference is minimized.
- DSSS Direct-Sequence Spread-Spectrum
- the narrow-band data transmission signal within the single frequency band is multiplied by a spreading code having a broader band than the user data signal and the user data signal is "spread" to fill the entire frequency band used.
- the modulation of a signal to be transmitted often includes taking a baseband signal (e.g., a voice channel) having a bandwidth of only a few kilohertz, and distributing the signal to be transmitted over a frequency band that may be many megahertz wide.
- spreading the user data signal may be accomplished by several methods, the most common is to modulate each bit of information, generally after appropriate error correction coding, with a spreading code sequence of bits. In doing so, many bits are generated for each coded information bit that is desired to be transmitted.
- transmissions between transceivers are subject to interference from a number of sources, therefore corrections and compensations must be considered when implementing Direct-Sequence Spread-Spectrum (DSSS) systems.
- DSSS Direct-Sequence Spread-Spectrum
- Multipath interference can also be cancelled through the use of spreading codes when carefully selected to ensure that secondary multipath rays are concurrent with the lowest sidelobe values of the selected spreading code's periodic autocorrelation functions. Accordingly, a need exists for a system and method for the selection of spreading codes for communication, based on information gathered between two nodes, in order to minimize and preferably eliminate multipath interference.
- An object of the present invention is to provide a system and method for determining the Multipath Delay Profile of the communication channel between two nodes in a communication network.
- Another object of the present invention is to determine a fitness function for each spreading code based upon the Multipath Delay Profile of a channel used for communication between two nodes of a communication network.
- a further object of the present invention is to determine the spreading code with the lowest fitness function based upon the Multipath Delay Profile of a channel used for communication between two nodes of a network, such as a wireless ad-hoc network, thereby minimizing the adverse effects of multipath during wireless communications.
- the system and method first issues a request-to-send (RTS) data packet between two nodes in a communication network using a high spreading-gain code used by all nodes.
- the RTS data is used to estimate the Multipath Delay Profile (MDP) of the radio-frequency link between nodes and a fitness evaluation of spreading codes based upon the Multipath Delay Profile reveals the optimum spreading code for use with the radio-frequency link.
- MDP Multipath Delay Profile
- a clear-to-send (CTS) data packet issued from the receiver node to the transmitting node includes information identifying the optimum spreading code to be used by the transmitting node.
- FIG. 1 is a flow diagram illustrating an example of spreading code determination between two nodes of a communication network in accordance with an embodiment of the present invention
- FIG. 2 is a conceptual block diagram of a node shown in FIG. 1 ;
- FIG. 3 is a plot illustrating an example of a Multipath Delay Profile estimate
- FIG. 4 is a plot illustrating the odd and even periodic auto-correlation functions of an 8-chip sequence.
- optimum spreading codes in node communication is a successful approach to reducing multipath interference.
- individual nodes are employed having the capability to determine optimum spreading codes during communication.
- two nodes 102 and 104 are used to determine, then implement, an optimum spreading code based on transmission channel factors.
- the nodes 102 and 104 can be employed as mobile nodes or intelligent access points (IAPs) of an ad-hoc wireless communication network, such as those described in U.S. patent application Ser. Nos. 09/897,790, 09/815,157 and 09/815,164, the entire contents of each being incorporated herein by reference.
- IAPs intelligent access points
- Each of the nodes includes the components necessary to perform all of the following tasks. Specifically, as shown in FIG.
- each node 102 and 104 includes a transceiver 122 which is coupled to an antenna 124 , such as an antenna array, and is capable of receiving and transmitting signals, such as packetized data signals to and from the node 102 or 104 under the control of a controller 126 .
- the packetized data signals can include, for example, voice, data or multimedia.
- the transceiver 122 can include signal processing components, such as tracking and storing circuitry, and each node further includes a memory 128 , such as a random access memory (RAM), that is capable of storing, among other things, routing information pertaining to itself and other nodes in the network.
- RAM random access memory
- node 102 is functioning as a transmitter.
- node 102 may function as a receiver.
- node 104 is functioning as a receiver, however, in another embodiment, node 104 may function as a transmitter.
- Initiating spreading code selection begins with a transmission of a request-to-send (RTS) data packet from node 102 to node 104 using a high spreading-gain code as shown at 106 .
- the transmission of the RTS data packet occurs via a transmission channel 120 between transceivers.
- node 104 determines a Multipath Delay Profile of the transmission channel at 108 .
- the determination of the Multipath Delay Profile can be achieved by matched-filtering a reference sequence in the RTS, a process made possible by the higher spreading gain of the sequence used.
- the determination of a Multipath Delay Profile is discussed in U.S. Pat. No. 6,229,842 issued to Schulin et al., which is incorporated herein by reference. Sufficient provisions should be made to determine all major contributing paths in the Multipath Delay Profile, however minor paths, such as those lower than the direct-path component by 10 or more decibels, will have little or no influence on the performance of the system and may be disregarded.
- the Multipath Delay Profile is a relation between chip delay and amplitude, indicating paths which potentially will cause the greatest interference. Amplitude peaks are shown occurring at chip delays 0 , 2 and 7 at 130 , 132 and 134 respectively. The amplitude peak at 130 in all likelihood corresponds to the direct path, because it is the first transmission to reach the receiver. The peaks at 132 and 134 correspond to secondary paths.
- the amount of interference caused by a secondary path is proportional to the product of the interference level estimated by the Multipath Delay Profile, and the periodic autocorrelation sidelobe value of the spreading sequence at the chip delay corresponding to the secondary path. Therefore, the selection of an optimum spreading code requires the estimate of the hypothetical interference levels for all possible spreading codes. Once the levels are known, the spreading code providing the lowest interference level is chosen.
- Each spreading code sequence considered is used to create an "even" and "odd" periodic auto-correlation function (PACF) as shown in FIG. 4 .
- the PACF of a spreading sequence x is defined by the following equation (1), ( 1 ) where i is the chip-sequence index and N is the length of the spreading code.
- the 8-chip sequence (1, ?? 1,1, ?? 1, ?? 1, ?? 1,1) has an "even" PACF of (8,0,0, ?? 4,0, ?? 4,0,0).
- the "odd" PACF for the sequence is (8, ?? 2,0, ?? 2,0,+2,0,+2).
- Chip-delays ?? 2 and ?? 4 at 136 and 138 respectively, are nulls of the function, therefore a signal received with a delay of 2 or 4 (modulo-8) chips will not correlate with the direct path.
- node 104 Given the Multipath Delay Profile of the transmission channel, node 104 calculates a fitness function for each spreading code considered for use with the transmission channel based on the estimated Multipath Delay Profile and PACF of each spreading code.
- R xx is the periodic auto-correlation function of the spreading sequence considered
- N is the length of the spreading sequence
- MDP is the Multipath Delay Profile of the transmission channel.
- node 104 is used to evaluate the fitness of each spreading code and the code found to have the lowest fitness will minimize the adverse effects of multipath and provide the best performance.
- the embodiment of the present invention is shown evaluating code sequences of length 8 , although the method may be generalized to code sequences of any length. Also, the embodiment of the present invention is shown evaluating three different code sequences, although the method can be generalized to any number of code sequences.
- FIG. 4 shows a typical auto-correlation function for a sequence of length 8 .
- chip-delays ?? 2 and ?? 4 are nulls of the function. Therefore, a signal received with a delay of 2 or 4 (modulo-8) chips will not correlate with the direct path.
- this property of direct-sequence spread spectrum (DSSS) modulation is used to minimize interpath interference when spreading codes are selected in accordance with an a priori estimation of the channel.
- DSSS direct-sequence spread spectrum
- spreading code sequence (1, ?? 1,1, ?? 1, ?? 1, ?? 1,1) as shown in FIG. 4 has an even periodic auto-correlation function of (8,0,0, ?? 4,0, ?? 4,0,0) and an odd auto-correlation function of (8, ?? 2,0, ?? 2,0,2,0,2).
- the estimated MDP of the communication channel shown in FIG. 3 shows peak values at delays of 0, 2 and 7 at 130 , 132 and 134 respectively.
- the determination of the fitness function from equation (3) yields a value of 0.25.
- the spreading code sequence considered second in row two of Table 1 spreading code sequence ( ?? 1, ?? 1,1,1, ?? 1, ?? 1,1), has a fitness function of 2.25, and the third considered in row three of Table 1, has a fitness function of 0.75. Based upon the evaluation, the spreading code of row one, having the lowest fitness function value of 0.25, would be chosen as the optimum spreading code. Node 104 selects this optimum code based on this evaluation, as shown at 110 in FIG. 1 , and sends a clear-to-send (CTS) packet at 112 , containing information about which spreading code must be used to decode data.
- CTS clear-to-send
- a wireless unit such as a laptop
- the decision of whether the unit is stationary or mobile can be made adaptively, for example, with a motion sensor, or repeated channel probes, or a unit can be designated as fixed, such as a base station mounted on a wall, or mobile, such as a personal digital assistant (PDA).
- PDA personal digital assistant
- the embodiment is highly adaptive and can be well suited for units which may be "redeployed" often, such as wireless routers or computers on a desk-devices which may not attain higher data rates because of an adverse multipath environment.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Noise Elimination (AREA)
Abstract
A system and method for providing optimum wireless communication spreading code selection such that communication channel interpath interference is minimized. In Direct-Sequence Spread-Spectrum, the autocorrelation properties of a spreading code greatly affects the inherent ability of a system to resist multipath. Low/spreading gain codes (or "short" codes) associated with high data rates do not perform well where large-amplitude multipath is present. The system and method presented herein overcomes this problem by selecting spreading codes in such a way that interference caused by multipath is minimized. The system and method does so by determining the characteristics of the radio-frequency link in order to select a spreading code that will minimize interpath interference.
Description
1. Field of the Invention
The present invention relates to a system and method for adapting spreading codes to the transmission channel medium in communication networks. Specifically, the present invention relates to a system and method for selecting an optimum spreading code for Direct-Sequence Spread-Spectrum (DSSS) node communication, based upon information gathered about the radio-frequency link between nodes, such that interpath interference is minimized.
2. Description of the Related Art
Many communication systems employ the use of spreading codes to transmit signals, such as voice, data or multimedia signals between transceivers, or nodes, of a network. In such applications, the narrow-band data transmission signal within the single frequency band is multiplied by a spreading code having a broader band than the user data signal and the user data signal is "spread" to fill the entire frequency band used. As discussed in U.S. Pat. No. 5,515,396 issued to Michael D. Kotzin, which is incorporated herein by reference, the modulation of a signal to be transmitted often includes taking a baseband signal (e.g., a voice channel) having a bandwidth of only a few kilohertz, and distributing the signal to be transmitted over a frequency band that may be many megahertz wide. Although spreading the user data signal may be accomplished by several methods, the most common is to modulate each bit of information, generally after appropriate error correction coding, with a spreading code sequence of bits. In doing so, many bits are generated for each coded information bit that is desired to be transmitted. However, transmissions between transceivers are subject to interference from a number of sources, therefore corrections and compensations must be considered when implementing Direct-Sequence Spread-Spectrum (DSSS) systems.
One such source of interference is multipath propagation between transceivers. Signals propagated along different paths, arrive at the receiver at different times due to variations in transmission delays. As discussed in U.S. Pat. No. 5,677,934, issued to Kjell Ostman, which is incorporated herein by reference, multipath propagation profiles are highly dependent upon the environment of the communication link. As pointed out in Ostman, when the signaling period is long, and delayed copies of the transmitted signals are received with a delay that is long in comparison to the signaling period, multipath propagation compensation is required. Furthermore, in mobile networks, the communications receiver sees rapid changes in phase and amplitude of a received signal and is required to track such changes. Several methods exist for addressing these effects, such as the use of RAKE receivers to collectively assemble transmitted signals. Through the use of a RAKE-receiver algorithm, a complete transmission may be derived from the multiple propagated signals within the receiver.
Multipath interference can also be cancelled through the use of spreading codes when carefully selected to ensure that secondary multipath rays are concurrent with the lowest sidelobe values of the selected spreading code's periodic autocorrelation functions. Accordingly, a need exists for a system and method for the selection of spreading codes for communication, based on information gathered between two nodes, in order to minimize and preferably eliminate multipath interference.
An object of the present invention is to provide a system and method for determining the Multipath Delay Profile of the communication channel between two nodes in a communication network.
Another object of the present invention is to determine a fitness function for each spreading code based upon the Multipath Delay Profile of a channel used for communication between two nodes of a communication network.
A further object of the present invention is to determine the spreading code with the lowest fitness function based upon the Multipath Delay Profile of a channel used for communication between two nodes of a network, such as a wireless ad-hoc network, thereby minimizing the adverse effects of multipath during wireless communications.
These and other objects are substantially achieved by a system and method which estimates the hypothetical interference levels for all possible spreading codes and determines which code provides the lowest interference level. The system and method first issues a request-to-send (RTS) data packet between two nodes in a communication network using a high spreading-gain code used by all nodes. The RTS data is used to estimate the Multipath Delay Profile (MDP) of the radio-frequency link between nodes and a fitness evaluation of spreading codes based upon the Multipath Delay Profile reveals the optimum spreading code for use with the radio-frequency link. A clear-to-send (CTS) data packet issued from the receiver node to the transmitting node includes information identifying the optimum spreading code to be used by the transmitting node.
These and other objects, features and characteristics of the present invention will become more apparent to those skilled in the art from a study of the following detailed description in conjunction with the appended claims and drawings, all of which form a part of this specification. In the drawings:
The selection and use of optimum spreading codes in node communication is a successful approach to reducing multipath interference. In the present embodiment of the invention discussed below, individual nodes are employed having the capability to determine optimum spreading codes during communication.
In an embodiment of the present invention shown in FIG. 1 , two nodes 102 and 104 are used to determine, then implement, an optimum spreading code based on transmission channel factors. The nodes 102 and 104 can be employed as mobile nodes or intelligent access points (IAPs) of an ad-hoc wireless communication network, such as those described in U.S. patent application Ser. Nos. 09/897,790, 09/815,157 and 09/815,164, the entire contents of each being incorporated herein by reference. Each of the nodes includes the components necessary to perform all of the following tasks. Specifically, as shown in FIG. 2 , each node 102 and 104 includes a transceiver 122 which is coupled to an antenna 124, such as an antenna array, and is capable of receiving and transmitting signals, such as packetized data signals to and from the node 102 or 104 under the control of a controller 126. The packetized data signals can include, for example, voice, data or multimedia. The transceiver 122 can include signal processing components, such as tracking and storing circuitry, and each node further includes a memory 128, such as a random access memory (RAM), that is capable of storing, among other things, routing information pertaining to itself and other nodes in the network.
The evaluation of transmission channel factors between nodes uses two or more nodes with task divisions based upon classification as a receiving node, or a sending node (i.e. receiver or transmitter) as will now be described. In FIG. 1 , node 102 is functioning as a transmitter. In another embodiment, node 102 may function as a receiver. Likewise, in FIG. 1 , node 104 is functioning as a receiver, however, in another embodiment, node 104 may function as a transmitter.
Initiating spreading code selection begins with a transmission of a request-to-send (RTS) data packet from node 102 to node 104 using a high spreading-gain code as shown at 106. The transmission of the RTS data packet occurs via a transmission channel 120 between transceivers. Based on receipt of the RTS data packet, node 104 determines a Multipath Delay Profile of the transmission channel at 108.
The determination of the Multipath Delay Profile can be achieved by matched-filtering a reference sequence in the RTS, a process made possible by the higher spreading gain of the sequence used. The determination of a Multipath Delay Profile is discussed in U.S. Pat. No. 6,229,842 issued to Schulin et al., which is incorporated herein by reference. Sufficient provisions should be made to determine all major contributing paths in the Multipath Delay Profile, however minor paths, such as those lower than the direct-path component by 10 or more decibels, will have little or no influence on the performance of the system and may be disregarded.
As shown in FIG. 3 , the Multipath Delay Profile is a relation between chip delay and amplitude, indicating paths which potentially will cause the greatest interference. Amplitude peaks are shown occurring at chip delays 0, 2 and 7 at 130, 132 and 134 respectively. The amplitude peak at 130 in all likelihood corresponds to the direct path, because it is the first transmission to reach the receiver. The peaks at 132 and 134 correspond to secondary paths.
As can be appreciated by one skilled in the art, the amount of interference caused by a secondary path is proportional to the product of the interference level estimated by the Multipath Delay Profile, and the periodic autocorrelation sidelobe value of the spreading sequence at the chip delay corresponding to the secondary path. Therefore, the selection of an optimum spreading code requires the estimate of the hypothetical interference levels for all possible spreading codes. Once the levels are known, the spreading code providing the lowest interference level is chosen.
Each spreading code sequence considered is used to create an "even" and "odd" periodic auto-correlation function (PACF) as shown in FIG. 4 . The PACF of a spreading sequence x is defined by the following equation (1),
where i is the chip-sequence index and N is the length of the spreading code.
where i is the chip-sequence index and N is the length of the spreading code.
In the previous equation (1), the values for x, defined as being the spreading code for i ε[1,N], are understood to be modulo N where,
x(0)=x(N)
x(−1)=x(N−1)
x(−2)=x(N−2)
and so forth. This defines what is referred to as the "even" PACF because it assumes that the previous and following symbol is identical. However, the previous and following symbol modulating the spreading sequence may take a difference value. In this case it is necessary to define the "odd" PACF where,
x(0)=−x(N)
x(−1)=−x(N−1)
x(−2)=−x(N−2)
and so forth. The two PACF functions can therefore be written as,
where xEVEN and xODD make different assumptions on the way symbols are modulated.
x(0)=x(N)
x(−1)=x(N−1)
x(−2)=x(N−2)
and so forth. This defines what is referred to as the "even" PACF because it assumes that the previous and following symbol is identical. However, the previous and following symbol modulating the spreading sequence may take a difference value. In this case it is necessary to define the "odd" PACF where,
x(0)=−x(N)
x(−1)=−x(N−1)
x(−2)=−x(N−2)
and so forth. The two PACF functions can therefore be written as,
where xEVEN and xODD make different assumptions on the way symbols are modulated.
As shown in FIG. 4 , the 8-chip sequence (1,−1,1,−1,−1,−1,1,1) has an "even" PACF of (8,0,0,−4,0,−4,0,0). The "odd" PACF for the sequence is (8,−2,0, −2,0,+2,0,+2). Chip-delays ±2 and ±4 at 136 and 138 respectively, are nulls of the function, therefore a signal received with a delay of 2 or 4 (modulo-8) chips will not correlate with the direct path. Given the Multipath Delay Profile of the transmission channel, node 104 calculates a fitness function for each spreading code considered for use with the transmission channel based on the estimated Multipath Delay Profile and PACF of each spreading code. The fitness function for each spreading sequence is defined as:
where Rxx is the periodic auto-correlation function of the spreading sequence considered, N is the length of the spreading sequence and MDP is the Multipath Delay Profile of the transmission channel.
where Rxx is the periodic auto-correlation function of the spreading sequence considered, N is the length of the spreading sequence and MDP is the Multipath Delay Profile of the transmission channel.
As shown in Table 1 below, node 104 is used to evaluate the fitness of each spreading code and the code found to have the lowest fitness will minimize the adverse effects of multipath and provide the best performance. The embodiment of the present invention is shown evaluating code sequences of length 8, although the method may be generalized to code sequences of any length. Also, the embodiment of the present invention is shown evaluating three different code sequences, although the method can be generalized to any number of code sequences.
| TABLE 1 |
| Calculation of Fitness Function for All Available Spreading Codes |
Sequence
Autocorrelation
Fitness Function
1-11-1-1-111
Odd
8-20-20202
Mean Sum
81030301
(shown FIG. 3)
PACF
MDP (Taps)
10.50000.25
Even
800-40-400
Fitness = 0.25
X0000000.25
PCAF
-1-1111年1月11日
Odd
82-4-6064-2
Mean Sum
81430341
PACF
MDP (Taps)
10.50000.25
Even
80-4000-40
Fitness = 2.25
X0200000.25
PACF
-11-1-11-111
Odd
8-2020-202
Mean Sum
83034303
PACF
MDP (Taps)
10.50000.25
Even
8-404-840-4
Fitness = 0.75
X0000000.75
PACF
For instance, in row one of Table 1, spreading code sequence (1,−1,1,−1,−1,−1,1,1) as shown in FIG. 4 , has an even periodic auto-correlation function of (8,0,0, −4,0,−4,0,0) and an odd auto-correlation function of (8,−2,0, −2,0,2,0,2). The estimated MDP of the communication channel shown in FIG. 3 shows peak values at delays of 0, 2 and 7 at 130, 132 and 134 respectively. The determination of the fitness function from equation (3) yields a value of 0.25. The spreading code sequence considered second in row two of Table 1, spreading code sequence (−1,−1,1,1,1,−1,−1,1), has a fitness function of 2.25, and the third considered in row three of Table 1, has a fitness function of 0.75. Based upon the evaluation, the spreading code of row one, having the lowest fitness function value of 0.25, would be chosen as the optimum spreading code. Node 104 selects this optimum code based on this evaluation, as shown at 110 in FIG. 1 , and sends a clear-to-send (CTS) packet at 112, containing information about which spreading code must be used to decode data. The embodiment described above can be used for any direct-sequence spread spectrum system which may use different spreading codes depending on the circumstances.
The system and method presented herein will be effective if the channel information that is estimated by the receiver when the transmission is initiated does not change significantly until the end of the transmission. Thus, the concept of stationarity can be relative to the overall transmission time. A wireless unit, such as a laptop, may be considered stationary or mobile depending on its current utilization, for example, on an office desk or in a vehicle. The decision of whether the unit is stationary or mobile can be made adaptively, for example, with a motion sensor, or repeated channel probes, or a unit can be designated as fixed, such as a base station mounted on a wall, or mobile, such as a personal digital assistant (PDA). However, the embodiment is highly adaptive and can be well suited for units which may be "redeployed" often, such as wireless routers or computers on a desk-devices which may not attain higher data rates because of an adverse multipath environment.
Although only a few exemplary embodiments of the present invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims.
Claims (19)
1. A method for selecting a spreading code for use in communication between nodes in a communication network based on transmission channel Multipath Delay Profiles, comprising the steps of:
controlling a first node to send a first data packet to a second node via a transmission channel using a spreading-gain code;
estimating a Multipath Delay Profile of said transmission channel based on said issued first data packet;
calculating a fitness function including said Multipath Delay Profile for a plurality of spreading codes of said transmission channel;
selecting a spreading code from a plurality of spreading codes available for said transmission channel based on said fitness function calculation; and
controlling said second node to send a second data packet to said first node, said second data packet including information adapted to inform said first node of said selected spreading code, wherein said fitness function corresponds to
where Rxx is the autocorrelation function of the spreading code considered, N is the length of the spreading code considered and MDP is the Multipath Delay Profile.
2. A method as claimed in claim 1 , wherein said estimating of said Multipath Delay Profile includes comparing amplitude versus chip delay.
3. A method as claimed in claim 1 , wherein said transmission channel remains substantially constant relative to a rate of transmission.
4. A method as claimed in claim 1 , wherein said first data packet includes request-to-send data.
5. A method as claimed in claim 1 , wherein said second data packet includes clear-to-send data.
6. A method as claimed in claim 1 , wherein said plurality of spreading codes comprises spreading codes suitable for use with said transmission channel.
7. A method as claimed in claim 1 , wherein said second node performs said estimate of a Multipath Delay Profile of said transmission channel, said calculation of a fitness function, and said selection of a spreading code.
8. A system for selecting a spreading code for communication between nodes in a communication network based on transmission channel Multipath Delay Profiles, comprising:
a first node, adapted to send a first data packet on a transmission channel using a spreading-gain code; and
a second node, adapted to receive said first data packet on said transmission channel, and in response, estimate a Multipath Delay Profile of said transmission channel, calculate a fitness function for a plurality of spreading codes of said transmission channel based on said Multipath Delay Profile, select a spreading code from said plurality of spreading codes of said transmission channel based on said fitness function, and send a second data packet to said first node, said second data packet including information adapted to inform said first node of said selected spreading code, and wherein said fitness function corresponds to
where Rxx is the autocorrelation function of the spreading code considered, N is the length of the spreading code considered and MDP is said Multipath Delay Profile.
9. A system as claimed in claim 8 , wherein said second node comprises:
an estimator, adapted to estimate said Multipath Delay Profile of said transmission channel based on said first data packet;
a calculator, adapted to calculate said fitness function for said plurality of spreading codes of said transmission channel based on said Multipath Delay Profile; and
a selector, adapted to select said spreading code from said plurality of spreading codes of said transmission channel based on said fitness function calculation.
10. A system as recited in claim 8 , wherein said first data packet includes request-to-send data.
11. A system as recited in claim 8 , wherein said second data packet includes clear-to-send data.
12. A system as recited in claim 8 , wherein said first node is further adapted to utilize said selected spreading code and to send additional data packets on said channel to said second node.
13. A system as recited in claim 8 , wherein said optimum spreading code decodes data at a desired rate.
14. A system as recited in claim 8 , wherein said transmission channel remains substantially constant.
15. A system as recited in claim 8 , wherein said estimate of said Multipath Delay Profile is based on a comparison of amplitude versus chip delay.
16. A wireless communications device, adapted to determine and implement spreading code values, comprising:
a transceiver, said transceiver adapted to send and receive data packets on a transmission channel; and
a controller, adapted to estimate a Multipath Delay Profile of said transmission channel based on a received data packet, calculate a fitness function for a plurality of spreading codes of said transmission channel based on said Multipath Delay Profile, and select a spreading code from said plurality of spreading codes of said transmission channel based on said fitness function, and wherein said fitness function corresponds to
where Rxx is the autocorrelation function of the spreading code considered, N is the length of the spreading code considered and MDP is said Multipath Delay Profile.
17. A wireless communications device as recited in claim 16 , wherein said data packet includes request-to-send data.
18. A wireless communications device as recited in claim 16 , wherein said data packet includes clear-to-send data.
19. A wireless communications device as recited in claim 16 , wherein said estimate of said Multipath Delay Profile comprises comparing amplitude versus chip delay.
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/117,179 US6987795B1 (en) | 2002年04月08日 | 2002年04月08日 | System and method for selecting spreading codes based on multipath delay profile estimation for wireless transceivers in a communication network |
| JP2003585305A JP2005522930A (en) | 2002年04月08日 | 2003年04月08日 | Spreading code selection system and method based on multipath delay profile estimation for wireless transceivers in communication networks |
| CA002480803A CA2480803A1 (en) | 2002年04月08日 | 2003年04月08日 | A system and method for selecting spreading codes based on multipath delay profile estimation for wireless transceivers in a communication network |
| PCT/US2003/010542 WO2003088506A2 (en) | 2002年04月08日 | 2003年04月08日 | System and method for selecting spreading codes based on multipath delay profile estimation for wireless communications network |
| EP03728339A EP1493236A4 (en) | 2002年04月08日 | 2003年04月08日 | A system and method for selecting spreading codes based on multipath delay profile estimation for wireless transceivers in a communication network |
| AU2003233488A AU2003233488A1 (en) | 2002年04月08日 | 2003年04月08日 | System and method for selecting spreading codes based on multipath delay profile estimation for wireless communications network |
| KR10-2004-7016163A KR20040101430A (en) | 2002年04月08日 | 2003年04月08日 | A system and method for selecting spreading codes based on multipath delay profile estimation for wireless transceivers in a communication network |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/117,179 US6987795B1 (en) | 2002年04月08日 | 2002年04月08日 | System and method for selecting spreading codes based on multipath delay profile estimation for wireless transceivers in a communication network |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US6987795B1 true US6987795B1 (en) | 2006年01月17日 |
Family
ID=29248198
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/117,179 Expired - Fee Related US6987795B1 (en) | 2002年04月08日 | 2002年04月08日 | System and method for selecting spreading codes based on multipath delay profile estimation for wireless transceivers in a communication network |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US6987795B1 (en) |
| EP (1) | EP1493236A4 (en) |
| JP (1) | JP2005522930A (en) |
| KR (1) | KR20040101430A (en) |
| AU (1) | AU2003233488A1 (en) |
| CA (1) | CA2480803A1 (en) |
| WO (1) | WO2003088506A2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080298499A1 (en) * | 2007年06月04日 | 2008年12月04日 | Tzuo-Bo Lin | Method for determining target type of control signals in multi-channel system |
| US20160270120A1 (en) * | 2013年10月25日 | 2016年09月15日 | Telefonaktiebolaget Lm Ericsson (Publ) | Receiver channel reservation |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113346968B (en) * | 2021年03月02日 | 2022年09月23日 | 西安电子科技大学 | Multipath Delay Estimation Method Based on Lasso Problem |
Citations (120)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4494192A (en) | 1982年07月21日 | 1985年01月15日 | Sperry Corporation | High speed bus architecture |
| US4617656A (en) | 1982年12月22日 | 1986年10月14日 | Tokyo Shibaura Denki Kabushiki Kaisha | Information transmission system with modems coupled to a common communication medium |
| US4736371A (en) | 1985年12月30日 | 1988年04月05日 | Nec Corporation | Satellite communications system with random multiple access and time slot reservation |
| US4742357A (en) | 1986年09月17日 | 1988年05月03日 | Rackley Ernie C | Stolen object location system |
| US4747130A (en) | 1985年12月17日 | 1988年05月24日 | American Telephone And Telegraph Company, At&T Bell Laboratories | Resource allocation in distributed control systems |
| US4910521A (en) | 1981年08月03日 | 1990年03月20日 | Texas Instruments Incorporated | Dual band communication receiver |
| US5034961A (en) | 1987年06月11日 | 1991年07月23日 | Software Sciences Limited | Area communications system |
| US5068916A (en) | 1990年10月29日 | 1991年11月26日 | International Business Machines Corporation | Coordination of wireless medium among a plurality of base stations |
| EP0513841A2 (en) | 1991年05月17日 | 1992年11月19日 | Nec Corporation | Dynamic channel assignment cordless telecommunication network |
| US5231634A (en) | 1991年12月18日 | 1993年07月27日 | Proxim, Inc. | Medium access protocol for wireless lans |
| US5233604A (en) | 1992年04月28日 | 1993年08月03日 | International Business Machines Corporation | Methods and apparatus for optimum path selection in packet transmission networks |
| US5241542A (en) | 1991年08月23日 | 1993年08月31日 | International Business Machines Corporation | Battery efficient operation of scheduled access protocol |
| FR2683326B1 (en) | 1991年10月31日 | 1993年12月24日 | Thomson Applic Radars Centre | METHOD FOR QUERYING A RADAR ANSWERING MACHINE AND AN ANSWERING MACHINE FOR IMPLEMENTING THE METHOD. |
| US5317593A (en) | 1993年03月03日 | 1994年05月31日 | Motorola, Inc. | Communication device with code sequence and frequency selection system |
| US5317566A (en) | 1993年08月18日 | 1994年05月31日 | Ascom Timeplex Trading Ag | Least cost route selection in distributed digital communication networks |
| EP0627827A2 (en) | 1993年05月14日 | 1994年12月07日 | CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. | Method of controlling transmission on a same radio channel of variable-rate information streams in radio communication systems, and radio communication system using this method |
| US5392450A (en) | 1992年01月08日 | 1995年02月21日 | General Electric Company | Satellite communications system |
| US5412654A (en) | 1994年01月10日 | 1995年05月02日 | International Business Machines Corporation | Highly dynamic destination-sequenced destination vector routing for mobile computers |
| US5424747A (en) | 1992年04月17日 | 1995年06月13日 | Thomson-Csf | Process and system for determining the position and orientation of a vehicle, and applications |
| WO1996008884A1 (en) | 1994年09月15日 | 1996年03月21日 | Victor Pierobon | Massive array cellular system |
| US5502722A (en) | 1994年08月01日 | 1996年03月26日 | Motorola, Inc. | Method and apparatus for a radio system using variable transmission reservation |
| US5515396A (en) | 1994年02月25日 | 1996年05月07日 | Motorola, Inc. | Method and apparatus for selecting a spreading code in a spectrum spread communication system |
| US5517491A (en) | 1995年05月03日 | 1996年05月14日 | Motorola, Inc. | Method and apparatus for controlling frequency deviation of a portable transceiver |
| US5555425A (en) | 1990年03月07日 | 1996年09月10日 | Dell Usa, L.P. | Multi-master bus arbitration system in which the address and data lines of the bus may be separately granted to individual masters |
| US5555540A (en) | 1995年02月17日 | 1996年09月10日 | Sun Microsystems, Inc. | ASIC bus structure |
| US5572528A (en) | 1995年03月20日 | 1996年11月05日 | Novell, Inc. | Mobile networking method and apparatus |
| US5615212A (en) | 1995年09月11日 | 1997年03月25日 | Motorola Inc. | Method, device and router for providing a contention-based reservation mechanism within a mini-slotted dynamic entry polling slot supporting multiple service classes |
| US5618045A (en) | 1995年02月08日 | 1997年04月08日 | Kagan; Michael | Interactive multiple player game system and method of playing a game between at least two players |
| US5621732A (en) | 1994年04月18日 | 1997年04月15日 | Nec Corporation | Access method and a relay station and terminals thereof |
| US5623495A (en) | 1995年06月15日 | 1997年04月22日 | Lucent Technologies Inc. | Portable base station architecture for an AD-HOC ATM lan |
| US5627976A (en) | 1991年08月23日 | 1997年05月06日 | Advanced Micro Devices, Inc. | Crossing transfers for maximizing the effective bandwidth in a dual-bus architecture |
| US5631897A (en) | 1993年10月01日 | 1997年05月20日 | Nec America, Inc. | Apparatus and method for incorporating a large number of destinations over circuit-switched wide area network connections |
| US5644576A (en) | 1994年10月26日 | 1997年07月01日 | International Business Machines Corporation | Medium access control scheme for wireless LAN using a variable length interleaved time division frame |
| WO1997024005A1 (en) | 1995年12月22日 | 1997年07月03日 | Michael Dimino | Telephone operable global tracking system for vehicles |
| US5652751A (en) | 1996年03月26日 | 1997年07月29日 | Hazeltine Corporation | Architecture for mobile radio networks with dynamically changing topology using virtual subnets |
| US5677934A (en) | 1992年12月30日 | 1997年10月14日 | Nokia Mobile Phones Limited | Multipath propagation compensation in a TDMA system |
| US5680392A (en) | 1996年01月16日 | 1997年10月21日 | General Datacomm, Inc. | Multimedia multipoint telecommunications reservation systems |
| US5684794A (en) | 1996年01月25日 | 1997年11月04日 | Hazeltine Corporation | Validation of subscriber signals in a cellular radio network |
| US5687194A (en) | 1985年03月20日 | 1997年11月11日 | Interdigital Technology Corporation | Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels |
| US5696903A (en) | 1993年05月11日 | 1997年12月09日 | Norand Corporation | Hierarchical communications system using microlink, data rate switching, frequency hopping and vehicular local area networking |
| US5701294A (en) | 1995年10月02日 | 1997年12月23日 | Telefonaktiebolaget Lm Ericsson | System and method for flexible coding, modulation, and time slot allocation in a radio telecommunications network |
| US5706428A (en) | 1996年03月14日 | 1998年01月06日 | Lucent Technologies Inc. | Multirate wireless data communication system |
| US5710977A (en) | 1994年08月31日 | 1998年01月20日 | Fujitsu Limited | Apparatus for measuring multipath propagation characteristics |
| US5717689A (en) | 1995年10月10日 | 1998年02月10日 | Lucent Technologies Inc. | Data link layer protocol for transport of ATM cells over a wireless link |
| US5745483A (en) | 1994年09月29日 | 1998年04月28日 | Ricoh Company, Ltd. | Wireless computer network communication system and method having at least two groups of wireless terminals |
| US5774876A (en) | 1996年06月26日 | 1998年06月30日 | Par Government Systems Corporation | Managing assets with active electronic tags |
| US5781540A (en) | 1995年06月30日 | 1998年07月14日 | Hughes Electronics | Device and method for communicating in a mobile satellite system |
| US5787080A (en) | 1996年06月03日 | 1998年07月28日 | Philips Electronics North America Corporation | Method and apparatus for reservation-based wireless-ATM local area network |
| US5794154A (en) | 1995年07月26日 | 1998年08月11日 | Motorola, Inc. | Communications system and method of operation |
| US5796732A (en) | 1996年03月28日 | 1998年08月18日 | Cisco Technology, Inc. | Architecture for an expandable transaction-based switching bus |
| US5796741A (en) | 1995年03月09日 | 1998年08月18日 | Nippon Telegraph And Telephone Corporation | ATM bus system |
| US5805593A (en) | 1995年09月26日 | 1998年09月08日 | At&T Corp | Routing method for setting up a service between an origination node and a destination node in a connection-communications network |
| US5805842A (en) | 1995年09月26日 | 1998年09月08日 | Intel Corporation | Apparatus, system and method for supporting DMA transfers on a multiplexed bus |
| US5805977A (en) | 1996年04月01日 | 1998年09月08日 | Motorola, Inc. | Method and apparatus for controlling transmissions in a two-way selective call communication system |
| US5809518A (en) | 1989年05月15日 | 1998年09月15日 | Dallas Semiconductor Corporation | Command/data transfer protocol for one-wire-bus architecture |
| US5822309A (en) | 1995年06月15日 | 1998年10月13日 | Lucent Technologies Inc. | Signaling and control architecture for an ad-hoc ATM LAN |
| US5845097A (en) | 1996年06月03日 | 1998年12月01日 | Samsung Electronics Co., Ltd. | Bus recovery apparatus and method of recovery in a multi-master bus system |
| US5844905A (en) | 1996年07月09日 | 1998年12月01日 | International Business Machines Corporation | Extensions to distributed MAC protocols with collision avoidance using RTS/CTS exchange |
| WO1998039936A3 (en) | 1997年03月03日 | 1998年12月03日 | Salbu Res & Dev Pty Ltd | Cellular communication system with mobile stations acting as relay stations |
| US5857084A (en) | 1993年11月02日 | 1999年01月05日 | Klein; Dean A. | Hierarchical bus structure access system |
| US5870350A (en) | 1997年05月21日 | 1999年02月09日 | International Business Machines Corporation | High performance, high bandwidth memory bus architecture utilizing SDRAMs |
| US5877724A (en) | 1997年03月25日 | 1999年03月02日 | Trimble Navigation Limited | Combined position locating and cellular telephone system with a single shared microprocessor |
| US5881095A (en) | 1997年05月01日 | 1999年03月09日 | Motorola, Inc. | Repeater assisted channel hopping system and method therefor |
| US5881372A (en) | 1995年09月02日 | 1999年03月09日 | Lucent Technologies Inc. | Radio communication device and method |
| WO1999012302A1 (en) | 1997年08月29日 | 1999年03月11日 | Telefonaktiebolaget Lm Ericsson (Publ) | A method for selecting a link protocol for a transparent data service in a digital communications system |
| US5884171A (en) * | 1994年03月15日 | 1999年03月16日 | Matsushita Electric Industrial Co., Ltd. | Radio communication apparatus and method for preventing hidden terminals from interrupting communications |
| US5886992A (en) | 1995年04月14日 | 1999年03月23日 | Valtion Teknillinen Tutkimuskeskus | Frame synchronized ring system and method |
| US5896561A (en) | 1992年04月06日 | 1999年04月20日 | Intermec Ip Corp. | Communication network having a dormant polling protocol |
| US5903559A (en) | 1996年12月20日 | 1999年05月11日 | Nec Usa, Inc. | Method for internet protocol switching over fast ATM cell transport |
| US5909651A (en) | 1996年08月02日 | 1999年06月01日 | Lucent Technologies Inc. | Broadcast short message service architecture |
| EP0924890A2 (en) | 1997年12月15日 | 1999年06月23日 | The Whitaker Corporation | Adaptive error correction for a communication link |
| US5936953A (en) | 1997年12月18日 | 1999年08月10日 | Raytheon Company | Multi-mode, multi-channel communication bus |
| US5943322A (en) | 1996年04月24日 | 1999年08月24日 | Itt Defense, Inc. | Communications method for a code division multiple access system without a base station |
| US5987011A (en) | 1996年08月30日 | 1999年11月16日 | Chai-Keong Toh | Routing method for Ad-Hoc mobile networks |
| US5987033A (en) | 1997年09月08日 | 1999年11月16日 | Lucent Technologies, Inc. | Wireless lan with enhanced capture provision |
| US5991279A (en) | 1995年12月07日 | 1999年11月23日 | Vistar Telecommunications Inc. | Wireless packet data distributed communications system |
| US6029217A (en) | 1994年10月03日 | 2000年02月22日 | International Business Machines Corporation | Queued arbitration mechanism for data processing system |
| US6028853A (en) | 1996年06月07日 | 2000年02月22日 | Telefonaktiebolaget Lm Ericsson | Method and arrangement for radio communication |
| US6034542A (en) | 1997年10月14日 | 2000年03月07日 | Xilinx, Inc. | Bus structure for modularized chip with FPGA modules |
| US6044062A (en) | 1996年12月06日 | 2000年03月28日 | Communique, Llc | Wireless network system and method for providing same |
| US6047330A (en) | 1998年01月20日 | 2000年04月04日 | Netscape Communications Corporation | Virtual router discovery system |
| US6052752A (en) | 1995年12月28日 | 2000年04月18日 | Daewoo Telecom Ltd. | Hierarchical dual bus architecture for use in an electronic switching system employing a distributed control architecture |
| US6052594A (en) | 1997年04月30日 | 2000年04月18日 | At&T Corp. | System and method for dynamically assigning channels for wireless packet communications |
| US6064626A (en) | 1998年07月31日 | 2000年05月16日 | Arm Limited | Peripheral buses for integrated circuit |
| US6067291A (en) | 1997年09月23日 | 2000年05月23日 | Lucent Technologies Inc. | Wireless local area network with enhanced carrier sense provision |
| WO2000034932A1 (en) | 1998年12月07日 | 2000年06月15日 | Simoco International Limited | Fleet position monitoring system |
| US6078566A (en) | 1998年04月28日 | 2000年06月20日 | Genesys Telecommunications Laboratories, Inc. | Noise reduction techniques and apparatus for enhancing wireless data network telephony |
| US6104712A (en) | 1999年02月22日 | 2000年08月15日 | Robert; Bruno G. | Wireless communication network including plural migratory access nodes |
| US6108738A (en) | 1997年06月10日 | 2000年08月22日 | Vlsi Technology, Inc. | Multi-master PCI bus system within a single integrated circuit |
| US6115580A (en) | 1998年09月08日 | 2000年09月05日 | Motorola, Inc. | Communications network having adaptive network link optimization using wireless terrain awareness and method for use therein |
| US6122690A (en) | 1997年06月05日 | 2000年09月19日 | Mentor Graphics Corporation | On-chip bus architecture that is both processor independent and scalable |
| US6130881A (en) | 1998年04月20日 | 2000年10月10日 | Sarnoff Corporation | Traffic routing in small wireless data networks |
| US6132306A (en) | 1995年09月06日 | 2000年10月17日 | Cisco Systems, Inc. | Cellular communication system with dedicated repeater channels |
| US6147975A (en) | 1999年06月02日 | 2000年11月14日 | Ac Properties B.V. | System, method and article of manufacture of a proactive threhold manager in a hybrid communication system architecture |
| US6163699A (en) | 1997年09月15日 | 2000年12月19日 | Ramot University Authority For Applied Research And Industrial Development Ltd. | Adaptive threshold scheme for tracking and paging mobile users |
| US6178337B1 (en) | 1995年12月20日 | 2001年01月23日 | Qualcomm Incorporated | Wireless telecommunications system utilizing CDMA radio frequency signal modulation in conjuction with the GSM A-interface telecommunications network protocol |
| WO2001010154A1 (en) | 1999年08月02日 | 2001年02月08日 | Itt Manufacturing Enterprises, Inc. | Method and apparatus for determining the position of a mobile communication device using low accuracy clocks |
| US6192230B1 (en) | 1993年03月06日 | 2001年02月20日 | Lucent Technologies, Inc. | Wireless data communication system having power saving function |
| US6192053B1 (en) | 1995年09月07日 | 2001年02月20日 | Wireless Networks, Inc. | Enhanced adjacency detection protocol for wireless applications |
| US6208870B1 (en) | 1998年10月27日 | 2001年03月27日 | Lucent Technologies Inc. | Short message service notification forwarded between multiple short message service centers |
| US6223240B1 (en) | 1998年01月27日 | 2001年04月24日 | Lsi Logic Corporation | Bus bridge architecture for a data processing system capable of sharing processing load among a plurality of devices |
| US6229842B1 (en) | 1998年07月16日 | 2001年05月08日 | Telefonaktiebolaget Lm Ericsson (Publ) | Adaptive path selection threshold setting for DS-CDMA receivers |
| WO2001035567A1 (en) | 1999年11月08日 | 2001年05月17日 | Itt Manufacturing Enterprises, Inc. | Method and apparatus for organizing selection of operational parameters in a communication system |
| US6240294B1 (en) | 1997年05月30日 | 2001年05月29日 | Itt Manufacturing Enterprises, Inc. | Mobile radio device having adaptive position transmitting capabilities |
| US6246875B1 (en) | 1995年12月04日 | 2001年06月12日 | Bell Atlantic Network Services, Inc. | Use of cellular digital packet data (CDPD) communications to convey system identification list data to roaming cellular subscriber stations |
| US6269075B1 (en) | 1998年01月26日 | 2001年07月31日 | Nokia Mobile Phones Limited | Finger assignment in a CDMA rake receiver |
| US6275707B1 (en) | 1999年10月08日 | 2001年08月14日 | Motorola, Inc. | Method and apparatus for assigning location estimates from a first transceiver to a second transceiver |
| US6285892B1 (en) | 1998年11月24日 | 2001年09月04日 | Philips Electronics North America Corp. | Data transmission system for reducing terminal power consumption in a wireless network |
| US6304556B1 (en) | 1998年08月24日 | 2001年10月16日 | Cornell Research Foundation, Inc. | Routing and mobility management protocols for ad-hoc networks |
| US6327300B1 (en) | 1999年10月25日 | 2001年12月04日 | Motorola, Inc. | Method and apparatus for dynamic spectrum allocation |
| US20020006121A1 (en) | 2000年04月27日 | 2002年01月17日 | Dileep George | Adaptive diversity combining for wide band code division multiple access (W-CDMA) based on iterative channel estimation |
| WO2001037483A3 (en) | 1999年11月12日 | 2002年01月24日 | Itt Mfg Enterprises Inc | Method and apparatus for transmission of node link status messages |
| US6349210B1 (en) | 1999年11月12日 | 2002年02月19日 | Itt Manufacturing Enterprises, Inc. | Method and apparatus for broadcasting messages in channel reservation communication systems |
| US6349091B1 (en) | 1999年11月12日 | 2002年02月19日 | Itt Manufacturing Enterprises, Inc. | Method and apparatus for controlling communication links between network nodes to reduce communication protocol overhead traffic |
| WO2001033770A3 (en) | 1999年11月03日 | 2002年04月18日 | Itt Mfg Enterprises Inc | Methods and apparatus for coordinating channel access to shared parallel data channels |
| WO2002035253A1 (en) | 2000年10月20日 | 2002年05月02日 | Itt Manufacturing Enterprises, Inc. | Mobile radio device having adaptive position transmitting capabilities |
| US20020106002A1 (en) * | 2000年11月24日 | 2002年08月08日 | Xiaobing Sun | Resource allocation in CDMA wireless communication systems |
| US6577671B1 (en) * | 1999年12月29日 | 2003年06月10日 | Nokia Mobile Phones Limited | Enhanced code allocation method for CDMA systems |
| US6731622B1 (en) * | 1998年05月01日 | 2004年05月04日 | Telefonaktiebolaget Lm Ericsson (Publ) | Multipath propagation delay determining means using periodically inserted pilot symbols |
| US6741550B1 (en) | 1998年06月16日 | 2004年05月25日 | Lg Information & Communications, Ltd. | Method of allocating optimum walsh codes to reverse link |
-
2002
- 2002年04月08日 US US10/117,179 patent/US6987795B1/en not_active Expired - Fee Related
-
2003
- 2003年04月08日 JP JP2003585305A patent/JP2005522930A/en not_active Ceased
- 2003年04月08日 WO PCT/US2003/010542 patent/WO2003088506A2/en not_active Ceased
- 2003年04月08日 AU AU2003233488A patent/AU2003233488A1/en not_active Abandoned
- 2003年04月08日 CA CA002480803A patent/CA2480803A1/en not_active Abandoned
- 2003年04月08日 EP EP03728339A patent/EP1493236A4/en not_active Withdrawn
- 2003年04月08日 KR KR10-2004-7016163A patent/KR20040101430A/en not_active Ceased
Patent Citations (126)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4910521A (en) | 1981年08月03日 | 1990年03月20日 | Texas Instruments Incorporated | Dual band communication receiver |
| US4494192A (en) | 1982年07月21日 | 1985年01月15日 | Sperry Corporation | High speed bus architecture |
| US4617656A (en) | 1982年12月22日 | 1986年10月14日 | Tokyo Shibaura Denki Kabushiki Kaisha | Information transmission system with modems coupled to a common communication medium |
| US5687194A (en) | 1985年03月20日 | 1997年11月11日 | Interdigital Technology Corporation | Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels |
| US4747130A (en) | 1985年12月17日 | 1988年05月24日 | American Telephone And Telegraph Company, At&T Bell Laboratories | Resource allocation in distributed control systems |
| US4736371A (en) | 1985年12月30日 | 1988年04月05日 | Nec Corporation | Satellite communications system with random multiple access and time slot reservation |
| US4742357A (en) | 1986年09月17日 | 1988年05月03日 | Rackley Ernie C | Stolen object location system |
| US5034961A (en) | 1987年06月11日 | 1991年07月23日 | Software Sciences Limited | Area communications system |
| US5809518A (en) | 1989年05月15日 | 1998年09月15日 | Dallas Semiconductor Corporation | Command/data transfer protocol for one-wire-bus architecture |
| US5555425A (en) | 1990年03月07日 | 1996年09月10日 | Dell Usa, L.P. | Multi-master bus arbitration system in which the address and data lines of the bus may be separately granted to individual masters |
| US5068916A (en) | 1990年10月29日 | 1991年11月26日 | International Business Machines Corporation | Coordination of wireless medium among a plurality of base stations |
| EP0513841A2 (en) | 1991年05月17日 | 1992年11月19日 | Nec Corporation | Dynamic channel assignment cordless telecommunication network |
| US5241542A (en) | 1991年08月23日 | 1993年08月31日 | International Business Machines Corporation | Battery efficient operation of scheduled access protocol |
| US5627976A (en) | 1991年08月23日 | 1997年05月06日 | Advanced Micro Devices, Inc. | Crossing transfers for maximizing the effective bandwidth in a dual-bus architecture |
| FR2683326B1 (en) | 1991年10月31日 | 1993年12月24日 | Thomson Applic Radars Centre | METHOD FOR QUERYING A RADAR ANSWERING MACHINE AND AN ANSWERING MACHINE FOR IMPLEMENTING THE METHOD. |
| US5231634A (en) | 1991年12月18日 | 1993年07月27日 | Proxim, Inc. | Medium access protocol for wireless lans |
| US5231634B1 (en) | 1991年12月18日 | 1996年04月02日 | Proxim Inc | Medium access protocol for wireless lans |
| US5392450A (en) | 1992年01月08日 | 1995年02月21日 | General Electric Company | Satellite communications system |
| US5896561A (en) | 1992年04月06日 | 1999年04月20日 | Intermec Ip Corp. | Communication network having a dormant polling protocol |
| US5424747A (en) | 1992年04月17日 | 1995年06月13日 | Thomson-Csf | Process and system for determining the position and orientation of a vehicle, and applications |
| US5233604A (en) | 1992年04月28日 | 1993年08月03日 | International Business Machines Corporation | Methods and apparatus for optimum path selection in packet transmission networks |
| US5677934A (en) | 1992年12月30日 | 1997年10月14日 | Nokia Mobile Phones Limited | Multipath propagation compensation in a TDMA system |
| US5317593A (en) | 1993年03月03日 | 1994年05月31日 | Motorola, Inc. | Communication device with code sequence and frequency selection system |
| US6192230B1 (en) | 1993年03月06日 | 2001年02月20日 | Lucent Technologies, Inc. | Wireless data communication system having power saving function |
| US5696903A (en) | 1993年05月11日 | 1997年12月09日 | Norand Corporation | Hierarchical communications system using microlink, data rate switching, frequency hopping and vehicular local area networking |
| EP0627827A2 (en) | 1993年05月14日 | 1994年12月07日 | CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. | Method of controlling transmission on a same radio channel of variable-rate information streams in radio communication systems, and radio communication system using this method |
| US5317566A (en) | 1993年08月18日 | 1994年05月31日 | Ascom Timeplex Trading Ag | Least cost route selection in distributed digital communication networks |
| US5631897A (en) | 1993年10月01日 | 1997年05月20日 | Nec America, Inc. | Apparatus and method for incorporating a large number of destinations over circuit-switched wide area network connections |
| US5857084A (en) | 1993年11月02日 | 1999年01月05日 | Klein; Dean A. | Hierarchical bus structure access system |
| US5412654A (en) | 1994年01月10日 | 1995年05月02日 | International Business Machines Corporation | Highly dynamic destination-sequenced destination vector routing for mobile computers |
| US5515396A (en) | 1994年02月25日 | 1996年05月07日 | Motorola, Inc. | Method and apparatus for selecting a spreading code in a spectrum spread communication system |
| US5884171A (en) * | 1994年03月15日 | 1999年03月16日 | Matsushita Electric Industrial Co., Ltd. | Radio communication apparatus and method for preventing hidden terminals from interrupting communications |
| US5621732A (en) | 1994年04月18日 | 1997年04月15日 | Nec Corporation | Access method and a relay station and terminals thereof |
| US5502722A (en) | 1994年08月01日 | 1996年03月26日 | Motorola, Inc. | Method and apparatus for a radio system using variable transmission reservation |
| US5710977A (en) | 1994年08月31日 | 1998年01月20日 | Fujitsu Limited | Apparatus for measuring multipath propagation characteristics |
| CA2132180C (en) | 1994年09月15日 | 2001年07月31日 | Victor Pierobon | Massive array cellular system |
| WO1996008884A1 (en) | 1994年09月15日 | 1996年03月21日 | Victor Pierobon | Massive array cellular system |
| US5745483A (en) | 1994年09月29日 | 1998年04月28日 | Ricoh Company, Ltd. | Wireless computer network communication system and method having at least two groups of wireless terminals |
| US6029217A (en) | 1994年10月03日 | 2000年02月22日 | International Business Machines Corporation | Queued arbitration mechanism for data processing system |
| US5644576A (en) | 1994年10月26日 | 1997年07月01日 | International Business Machines Corporation | Medium access control scheme for wireless LAN using a variable length interleaved time division frame |
| US5618045A (en) | 1995年02月08日 | 1997年04月08日 | Kagan; Michael | Interactive multiple player game system and method of playing a game between at least two players |
| US5555540A (en) | 1995年02月17日 | 1996年09月10日 | Sun Microsystems, Inc. | ASIC bus structure |
| US5796741A (en) | 1995年03月09日 | 1998年08月18日 | Nippon Telegraph And Telephone Corporation | ATM bus system |
| US5572528A (en) | 1995年03月20日 | 1996年11月05日 | Novell, Inc. | Mobile networking method and apparatus |
| US5886992A (en) | 1995年04月14日 | 1999年03月23日 | Valtion Teknillinen Tutkimuskeskus | Frame synchronized ring system and method |
| US5517491A (en) | 1995年05月03日 | 1996年05月14日 | Motorola, Inc. | Method and apparatus for controlling frequency deviation of a portable transceiver |
| US5623495A (en) | 1995年06月15日 | 1997年04月22日 | Lucent Technologies Inc. | Portable base station architecture for an AD-HOC ATM lan |
| US5822309A (en) | 1995年06月15日 | 1998年10月13日 | Lucent Technologies Inc. | Signaling and control architecture for an ad-hoc ATM LAN |
| US5781540A (en) | 1995年06月30日 | 1998年07月14日 | Hughes Electronics | Device and method for communicating in a mobile satellite system |
| US5794154A (en) | 1995年07月26日 | 1998年08月11日 | Motorola, Inc. | Communications system and method of operation |
| US5881372A (en) | 1995年09月02日 | 1999年03月09日 | Lucent Technologies Inc. | Radio communication device and method |
| US6132306A (en) | 1995年09月06日 | 2000年10月17日 | Cisco Systems, Inc. | Cellular communication system with dedicated repeater channels |
| US6192053B1 (en) | 1995年09月07日 | 2001年02月20日 | Wireless Networks, Inc. | Enhanced adjacency detection protocol for wireless applications |
| US5615212A (en) | 1995年09月11日 | 1997年03月25日 | Motorola Inc. | Method, device and router for providing a contention-based reservation mechanism within a mini-slotted dynamic entry polling slot supporting multiple service classes |
| US5805593A (en) | 1995年09月26日 | 1998年09月08日 | At&T Corp | Routing method for setting up a service between an origination node and a destination node in a connection-communications network |
| US5805842A (en) | 1995年09月26日 | 1998年09月08日 | Intel Corporation | Apparatus, system and method for supporting DMA transfers on a multiplexed bus |
| US5701294A (en) | 1995年10月02日 | 1997年12月23日 | Telefonaktiebolaget Lm Ericsson | System and method for flexible coding, modulation, and time slot allocation in a radio telecommunications network |
| US5717689A (en) | 1995年10月10日 | 1998年02月10日 | Lucent Technologies Inc. | Data link layer protocol for transport of ATM cells over a wireless link |
| US6246875B1 (en) | 1995年12月04日 | 2001年06月12日 | Bell Atlantic Network Services, Inc. | Use of cellular digital packet data (CDPD) communications to convey system identification list data to roaming cellular subscriber stations |
| US5991279A (en) | 1995年12月07日 | 1999年11月23日 | Vistar Telecommunications Inc. | Wireless packet data distributed communications system |
| US6178337B1 (en) | 1995年12月20日 | 2001年01月23日 | Qualcomm Incorporated | Wireless telecommunications system utilizing CDMA radio frequency signal modulation in conjuction with the GSM A-interface telecommunications network protocol |
| WO1997024005A1 (en) | 1995年12月22日 | 1997年07月03日 | Michael Dimino | Telephone operable global tracking system for vehicles |
| US6052752A (en) | 1995年12月28日 | 2000年04月18日 | Daewoo Telecom Ltd. | Hierarchical dual bus architecture for use in an electronic switching system employing a distributed control architecture |
| US5680392A (en) | 1996年01月16日 | 1997年10月21日 | General Datacomm, Inc. | Multimedia multipoint telecommunications reservation systems |
| US5684794A (en) | 1996年01月25日 | 1997年11月04日 | Hazeltine Corporation | Validation of subscriber signals in a cellular radio network |
| US5706428A (en) | 1996年03月14日 | 1998年01月06日 | Lucent Technologies Inc. | Multirate wireless data communication system |
| US5652751A (en) | 1996年03月26日 | 1997年07月29日 | Hazeltine Corporation | Architecture for mobile radio networks with dynamically changing topology using virtual subnets |
| US5796732A (en) | 1996年03月28日 | 1998年08月18日 | Cisco Technology, Inc. | Architecture for an expandable transaction-based switching bus |
| US5805977A (en) | 1996年04月01日 | 1998年09月08日 | Motorola, Inc. | Method and apparatus for controlling transmissions in a two-way selective call communication system |
| US5943322A (en) | 1996年04月24日 | 1999年08月24日 | Itt Defense, Inc. | Communications method for a code division multiple access system without a base station |
| US5787080A (en) | 1996年06月03日 | 1998年07月28日 | Philips Electronics North America Corporation | Method and apparatus for reservation-based wireless-ATM local area network |
| US5845097A (en) | 1996年06月03日 | 1998年12月01日 | Samsung Electronics Co., Ltd. | Bus recovery apparatus and method of recovery in a multi-master bus system |
| US6028853A (en) | 1996年06月07日 | 2000年02月22日 | Telefonaktiebolaget Lm Ericsson | Method and arrangement for radio communication |
| US5774876A (en) | 1996年06月26日 | 1998年06月30日 | Par Government Systems Corporation | Managing assets with active electronic tags |
| US5844905A (en) | 1996年07月09日 | 1998年12月01日 | International Business Machines Corporation | Extensions to distributed MAC protocols with collision avoidance using RTS/CTS exchange |
| US5909651A (en) | 1996年08月02日 | 1999年06月01日 | Lucent Technologies Inc. | Broadcast short message service architecture |
| US5987011A (en) | 1996年08月30日 | 1999年11月16日 | Chai-Keong Toh | Routing method for Ad-Hoc mobile networks |
| US6249516B1 (en) | 1996年12月06日 | 2001年06月19日 | Edwin B. Brownrigg | Wireless network gateway and method for providing same |
| US6044062A (en) | 1996年12月06日 | 2000年03月28日 | Communique, Llc | Wireless network system and method for providing same |
| US5903559A (en) | 1996年12月20日 | 1999年05月11日 | Nec Usa, Inc. | Method for internet protocol switching over fast ATM cell transport |
| WO1998039936A3 (en) | 1997年03月03日 | 1998年12月03日 | Salbu Res & Dev Pty Ltd | Cellular communication system with mobile stations acting as relay stations |
| US5877724A (en) | 1997年03月25日 | 1999年03月02日 | Trimble Navigation Limited | Combined position locating and cellular telephone system with a single shared microprocessor |
| US6052594A (en) | 1997年04月30日 | 2000年04月18日 | At&T Corp. | System and method for dynamically assigning channels for wireless packet communications |
| US5881095A (en) | 1997年05月01日 | 1999年03月09日 | Motorola, Inc. | Repeater assisted channel hopping system and method therefor |
| US5870350A (en) | 1997年05月21日 | 1999年02月09日 | International Business Machines Corporation | High performance, high bandwidth memory bus architecture utilizing SDRAMs |
| US6240294B1 (en) | 1997年05月30日 | 2001年05月29日 | Itt Manufacturing Enterprises, Inc. | Mobile radio device having adaptive position transmitting capabilities |
| US6122690A (en) | 1997年06月05日 | 2000年09月19日 | Mentor Graphics Corporation | On-chip bus architecture that is both processor independent and scalable |
| US6108738A (en) | 1997年06月10日 | 2000年08月22日 | Vlsi Technology, Inc. | Multi-master PCI bus system within a single integrated circuit |
| WO1999012302A1 (en) | 1997年08月29日 | 1999年03月11日 | Telefonaktiebolaget Lm Ericsson (Publ) | A method for selecting a link protocol for a transparent data service in a digital communications system |
| US5987033A (en) | 1997年09月08日 | 1999年11月16日 | Lucent Technologies, Inc. | Wireless lan with enhanced capture provision |
| US6163699A (en) | 1997年09月15日 | 2000年12月19日 | Ramot University Authority For Applied Research And Industrial Development Ltd. | Adaptive threshold scheme for tracking and paging mobile users |
| US6067291A (en) | 1997年09月23日 | 2000年05月23日 | Lucent Technologies Inc. | Wireless local area network with enhanced carrier sense provision |
| US6034542A (en) | 1997年10月14日 | 2000年03月07日 | Xilinx, Inc. | Bus structure for modularized chip with FPGA modules |
| EP0924890A2 (en) | 1997年12月15日 | 1999年06月23日 | The Whitaker Corporation | Adaptive error correction for a communication link |
| US5936953A (en) | 1997年12月18日 | 1999年08月10日 | Raytheon Company | Multi-mode, multi-channel communication bus |
| US6047330A (en) | 1998年01月20日 | 2000年04月04日 | Netscape Communications Corporation | Virtual router discovery system |
| US6269075B1 (en) | 1998年01月26日 | 2001年07月31日 | Nokia Mobile Phones Limited | Finger assignment in a CDMA rake receiver |
| US6223240B1 (en) | 1998年01月27日 | 2001年04月24日 | Lsi Logic Corporation | Bus bridge architecture for a data processing system capable of sharing processing load among a plurality of devices |
| US6130881A (en) | 1998年04月20日 | 2000年10月10日 | Sarnoff Corporation | Traffic routing in small wireless data networks |
| US6078566A (en) | 1998年04月28日 | 2000年06月20日 | Genesys Telecommunications Laboratories, Inc. | Noise reduction techniques and apparatus for enhancing wireless data network telephony |
| US6731622B1 (en) * | 1998年05月01日 | 2004年05月04日 | Telefonaktiebolaget Lm Ericsson (Publ) | Multipath propagation delay determining means using periodically inserted pilot symbols |
| US6741550B1 (en) | 1998年06月16日 | 2004年05月25日 | Lg Information & Communications, Ltd. | Method of allocating optimum walsh codes to reverse link |
| US6229842B1 (en) | 1998年07月16日 | 2001年05月08日 | Telefonaktiebolaget Lm Ericsson (Publ) | Adaptive path selection threshold setting for DS-CDMA receivers |
| US6064626A (en) | 1998年07月31日 | 2000年05月16日 | Arm Limited | Peripheral buses for integrated circuit |
| US6304556B1 (en) | 1998年08月24日 | 2001年10月16日 | Cornell Research Foundation, Inc. | Routing and mobility management protocols for ad-hoc networks |
| US6115580A (en) | 1998年09月08日 | 2000年09月05日 | Motorola, Inc. | Communications network having adaptive network link optimization using wireless terrain awareness and method for use therein |
| US6208870B1 (en) | 1998年10月27日 | 2001年03月27日 | Lucent Technologies Inc. | Short message service notification forwarded between multiple short message service centers |
| US6285892B1 (en) | 1998年11月24日 | 2001年09月04日 | Philips Electronics North America Corp. | Data transmission system for reducing terminal power consumption in a wireless network |
| WO2000034932A1 (en) | 1998年12月07日 | 2000年06月15日 | Simoco International Limited | Fleet position monitoring system |
| US6104712A (en) | 1999年02月22日 | 2000年08月15日 | Robert; Bruno G. | Wireless communication network including plural migratory access nodes |
| US6147975A (en) | 1999年06月02日 | 2000年11月14日 | Ac Properties B.V. | System, method and article of manufacture of a proactive threhold manager in a hybrid communication system architecture |
| US20010053699A1 (en) | 1999年08月02日 | 2001年12月20日 | Mccrady Dennis D. | Method and apparatus for determining the position of a mobile communication device |
| WO2001010154A1 (en) | 1999年08月02日 | 2001年02月08日 | Itt Manufacturing Enterprises, Inc. | Method and apparatus for determining the position of a mobile communication device using low accuracy clocks |
| US6275707B1 (en) | 1999年10月08日 | 2001年08月14日 | Motorola, Inc. | Method and apparatus for assigning location estimates from a first transceiver to a second transceiver |
| US6327300B1 (en) | 1999年10月25日 | 2001年12月04日 | Motorola, Inc. | Method and apparatus for dynamic spectrum allocation |
| WO2001033770A3 (en) | 1999年11月03日 | 2002年04月18日 | Itt Mfg Enterprises Inc | Methods and apparatus for coordinating channel access to shared parallel data channels |
| WO2001035567A1 (en) | 1999年11月08日 | 2001年05月17日 | Itt Manufacturing Enterprises, Inc. | Method and apparatus for organizing selection of operational parameters in a communication system |
| US6349091B1 (en) | 1999年11月12日 | 2002年02月19日 | Itt Manufacturing Enterprises, Inc. | Method and apparatus for controlling communication links between network nodes to reduce communication protocol overhead traffic |
| WO2001037482A3 (en) | 1999年11月12日 | 2002年03月07日 | Itt Mfg Enterprises Inc | Method and apparatus for controlling communication links between network nodes to reduce communication protocol overhead traffic |
| WO2001037481A3 (en) | 1999年11月12日 | 2002年03月21日 | Itt Mfg Enterprises Inc | Method and apparatus for broadcasting messages in channel reservation communication systems |
| US6349210B1 (en) | 1999年11月12日 | 2002年02月19日 | Itt Manufacturing Enterprises, Inc. | Method and apparatus for broadcasting messages in channel reservation communication systems |
| WO2001037483A3 (en) | 1999年11月12日 | 2002年01月24日 | Itt Mfg Enterprises Inc | Method and apparatus for transmission of node link status messages |
| US6577671B1 (en) * | 1999年12月29日 | 2003年06月10日 | Nokia Mobile Phones Limited | Enhanced code allocation method for CDMA systems |
| US20020006121A1 (en) | 2000年04月27日 | 2002年01月17日 | Dileep George | Adaptive diversity combining for wide band code division multiple access (W-CDMA) based on iterative channel estimation |
| WO2002035253A1 (en) | 2000年10月20日 | 2002年05月02日 | Itt Manufacturing Enterprises, Inc. | Mobile radio device having adaptive position transmitting capabilities |
| US20020106002A1 (en) * | 2000年11月24日 | 2002年08月08日 | Xiaobing Sun | Resource allocation in CDMA wireless communication systems |
Non-Patent Citations (22)
| Title |
|---|
| Ad Kamerman and Guido Aben, "Net Throughput with IEEE 802.11 Wireless LANs". |
| Andras G. Valko, "Cellular IP: A New Approach to Internet Host Mobility", Jan. 1999, ACM Computer Communication Review. |
| Benjamin B. Peterson, Chris Kmiecik, Richard Hartnett, Patrick M. Thompson, Jose Mendoza and Hung Nguyen, "Spread Spectrum Indoor Geolocation", Aug. 1998, Navigation: Journal of the Institute of Navigation, vol. 45, No. 2, summer 1998. |
| C. David Young, "USAP: A Unifying Dynamic Distributed Multichannel TDMA Slot Assignment Protocol". |
| Chip Elliott and Bob Heile, "Self-Organizing, Self-Healing Wireless Networks", 2000 IEEE. |
| George Vardakas and Wendell Kishaba, "QoS Networking With Adaptive Link Control and Tactical Multi-Channel Software Radios". |
| J.J. Garcia-Luna-Aceves and Asimakis Tzamaloukas, "Reversing the Collision-Avoidance Handshake in Wireless Networks". |
| J.J. Garcia-Luna-Aceves and Ewerton L. Madruga, "The Core-Assisted Mesh Protocol", Aug. 1999, IEEE Journal on Selected Areas in Communications, vol. 17, No. 8. |
| J.J. Garcia-Luna-Aceves and Marcelo Spohn, "Transmission-Efficient Routing in Wireless Networks Using Link-State Information". |
| J.R. McChesney and R.J. Saulitis, "Optimization of an Adaptive Link Control Protocol for Multimedia Packet Radio Networks". |
| Johnson, I.R. et al., "On Suitable Codes for Frame Synchronisation in Packet Radio LANs;" Vehicular Technology Conference, 1994 IEEE 44<SUP>th </SUP>Stockholm, Sweden Jun. 8-10, 1994, New York, NY, USA, IEEE, Jun. 8, 1994 pp. 1421-1424, ISBN: 07-7803-1927-3. |
| Johnson, I.R. et al., "On Suitable Codes for Frame Synchronisation in Packet Radio LANs;" Vehicular Technology Conference, 1994 IEEE 44th Stockholm, Sweden Jun. 8-10, 1994, New York, NY, USA, IEEE, Jun. 8, 1994 pp. 1421-1424, ISBN: 07-7803-1927-3. |
| Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu and Jorjeta Jetcheva, "A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols", Oct. 25-30, 1998, Proceedings of the 4<SUP>th </SUP>Annual ACM/IEEE International Conference on Mobile Computing and Networking. |
| Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu and Jorjeta Jetcheva, "A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols", Oct. 25-30, 1998, Proceedings of the 4th Annual ACM/IEEE International Conference on Mobile Computing and Networking. |
| Martha E. Steenstrup, "Dynamic Multipoint Virtual Circuits for Multimedia Traffic in Multihop Mobile Wireless Networks". |
| Ram Ramanathan and Martha E. Steenstrup, "Hierarchically-Organized, Multihop Mobile Wireless Networks for Quality-of-Service Support". |
| Ram Ramanathan and Regina Rosales-Hain, "Topology Control of Multihop Wireless Networks using Transmit Power Adjustment", |
| Richard North, Dale Bryan and Dennis Baker, "Wireless Networked Radios: Comparison of Military, Commercial, and R&D Protocols", Feb. 28-Mar. 3, 1999, 2<SUP>nd </SUP>Annual UCSD Conference on Wireless Communications, San Diego CA. |
| Richard North, Dale Bryan and Dennis Baker, "Wireless Networked Radios: Comparison of Military, Commercial, and R&D Protocols", Feb. 28-Mar. 3, 1999, 2nd Annual UCSD Conference on Wireless Communications, San Diego CA. |
| Wong et al., "A Pattern Recognition System for Handoff Algorithms", Jul. 2000, IEEE Journal on Selected Areas in Communications, vol. 18, No. 7. |
| Wong et al., "Soft Handoffs in CDMA Mobile Systems", Dec. 1997, IEEE Personal Communications. |
| Zhenyu Tang and J.J. Garcia-Luna-Aceves, "Collision-Avoidance Transmission Scheduling for Ad-Hoc Networks". |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080298499A1 (en) * | 2007年06月04日 | 2008年12月04日 | Tzuo-Bo Lin | Method for determining target type of control signals in multi-channel system |
| US8121181B2 (en) | 2007年06月04日 | 2012年02月21日 | Realtek Semiconductor Corp. | Method for determining target type of control signals in multi-channel system |
| US20160270120A1 (en) * | 2013年10月25日 | 2016年09月15日 | Telefonaktiebolaget Lm Ericsson (Publ) | Receiver channel reservation |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2003233488A8 (en) | 2003年10月27日 |
| EP1493236A2 (en) | 2005年01月05日 |
| KR20040101430A (en) | 2004年12月02日 |
| EP1493236A4 (en) | 2005年04月20日 |
| JP2005522930A (en) | 2005年07月28日 |
| WO2003088506A2 (en) | 2003年10月23日 |
| WO2003088506A3 (en) | 2004年02月12日 |
| AU2003233488A1 (en) | 2003年10月27日 |
| CA2480803A1 (en) | 2003年10月23日 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5456727B2 (en) | Method and apparatus for beamforming in a wireless communication system | |
| EP1077535B1 (en) | Transmit diversity method and system with phase adjustment for radio communications systems | |
| US20060088081A1 (en) | Transmit-rake apparatus in communication systems and associated methods | |
| EP1655872A1 (en) | Mobile communication receiver and transmitter for multiple wireless schemes | |
| US7924907B2 (en) | Apparatus and method for spreading/de-spreading data using pair of child orthogonal variable spreading factor codes | |
| KR100903231B1 (en) | Directed maximum ratio combining and scheduling of high rate transmissions for data networks | |
| US6879813B2 (en) | Link-quality estimation method and components for multi-user wireless communication systems | |
| US7746942B2 (en) | Apparatus and method for controlling dynamic range of weight vectors according to combining methods in a mobile station equipped with multiple antennas in high rate packet data system using code division multiple access scheme | |
| EP0722636B1 (en) | Method of increasing signal quality by adjusting the spreading ratio in a cdma cellular radio system | |
| US8139692B2 (en) | Code evaluator, code evaluation method, radio communication system, base station and mobile station | |
| WO2004062135A1 (en) | Communication method | |
| US6987795B1 (en) | System and method for selecting spreading codes based on multipath delay profile estimation for wireless transceivers in a communication network | |
| US7065131B2 (en) | Processor and method for weight detection in a closed loop diversity mode WCDMA system | |
| US7558309B2 (en) | Low-interference UWB wireless communication system and processing method thereof and storage medium recorded program of the same | |
| US7006554B2 (en) | Resource allocation in CDMA wireless communication systems | |
| US20060146916A1 (en) | Adaptive frame durations for time-hopped impulse radio systems | |
| US7089039B2 (en) | Method and device for feedback transmission in a radio communication system | |
| US20030108028A1 (en) | Method and device for evaluation of a radio signal | |
| US7047045B2 (en) | Symbol estimation-based decorrelator for estimating spatial signatures in a wireless communications system | |
| Kondo et al. | Linear predictive transmitter diversity for microcellular TDMA/TDD mobile radio system | |
| EP1355433A1 (en) | Radio station and radio network controller | |
| US20050180365A1 (en) | Code allocation based on cross code correlation | |
| US6950630B2 (en) | Hard decision-based decorrelator for estimating spatial signatures in a wireless communications system | |
| WO2007020563A1 (en) | Method and apparatus of multiple antennas transmission | |
| US6931262B2 (en) | Soft decision-based decorrelator for estimating spatial signatures in a wireless communications system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MESHNETWORKS, INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STRUTT, GUENAEL T.;ALAPURANEN, PERTTI O.;REEL/FRAME:012772/0782;SIGNING DATES FROM 20020404 TO 20020405 |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140117 |