4
$\begingroup$

Let $(\Omega,\mathcal{F},P)$ be a probability space and $X$ be a random variable on it. Consider a sub $\sigma$-algebra $\mathcal{G}$. $X$ is said to be independent of $\mathcal{G}$ if $\sigma(X)$ and $\mathcal{G}$ are independent as $\sigma$-algebras.

I already know the fact that independence of $X$ and $\mathcal{G}$ implies $\mathbb{E}[X|\mathcal{G}]=\mathbb{E}[X]$ but not necessarily the other way round. However, if $X$ satisfies the equality $\mathbb{E}[e^{itX}|\mathcal{G}]=\mathbb{E}[e^{itX}]$, for all $t\in\mathbb{R}$, then can we conclude that $X$ and $\mathcal{G}$ are independent?

asked Feb 15, 2020 at 0:47
$\endgroup$

1 Answer 1

3
$\begingroup$

Yes. The equality $\mathbb{E}[e^{itX}|\mathcal{G}]=\mathbb{E}[e^{itX}]$ means that for any $A\in\mathcal G$ and for all $t$ $$ \mathbb{E}[e^{itX} \mathbb 1_A]=\mathbb{E}[e^{itX}]\cdot\mathbb P(A). $$ And also $A^c\in\mathcal G$, so this equality holds for $A^c$ as well.

Let us use Kac's theorem $$ \mathbb{E}[e^{itX} e^{is\mathbb 1_A}]=\mathbb{E}[e^{itX}\left(e^{is}\mathbb 1_A+\mathbb 1_{A^c}\right)]=e^{is}\mathbb{E}[e^{itX}\mathbb 1_A]+\mathbb{E}[e^{itX}\mathbb 1_{A^c}] $$ $$ = e^{is} \mathbb{E}[e^{itX}]\mathbb P(A) + \mathbb{E}[e^{itX}]\mathbb P(A^c) = \mathbb{E}[e^{itX}]\left(e^{is}\mathbb P(A) +\mathbb P(A^c)\right) = \mathbb{E}[e^{itX}]\mathbb{E}[e^{is\mathbb 1_A}]. $$ We can see that for all $t,s\in\mathbb R$, the joint characteristic function of $X,\mathbb 1_A$ is a product of c.f.'s. Kac's theorem implies that $X$ and $\mathbb 1_A$ are independent. And since it holds for all $A\in\mathcal G$, $X$ and $\mathcal G$ are independent.

answered Feb 15, 2020 at 1:41
$\endgroup$
1
  • $\begingroup$ Thanks a lot! This is a very nice proof. $\endgroup$ Commented Feb 15, 2020 at 6:20

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.