1//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7//===----------------------------------------------------------------------===//
9// Implementation of ELF support for the MC-JIT runtime dynamic linker.
11//===----------------------------------------------------------------------===//
28 #define DEBUG_TYPE "dyld"
33 or32le(L, (Imm & 0xFFF) << 10);
36 template <
class T>
static void write(
bool isBE,
void *
P,
T V) {
43 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
44 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
48// Return the bits [Start, End] from Val shifted Start bits.
49// For instance, getBits(0xF0, 4, 8) returns 0xF.
52 return (Val >> Start) & Mask;
57template <
class ELFT>
class DyldELFObject :
public ELFObjectFile<ELFT> {
60 typedef typename ELFT::uint addr_type;
62 DyldELFObject(ELFObjectFile<ELFT> &&Obj);
65 static Expected<std::unique_ptr<DyldELFObject>>
66 create(MemoryBufferRef
Wrapper);
68 void updateSectionAddress(
const SectionRef &Sec, uint64_t Addr);
70 void updateSymbolAddress(
const SymbolRef &SymRef, uint64_t Addr);
72 // Methods for type inquiry through isa, cast and dyn_cast
73 static bool classof(
const Binary *v) {
74 return (
isa<ELFObjectFile<ELFT>>(v) &&
75 classof(
cast<ELFObjectFile<ELFT>>(v)));
77 static bool classof(
const ELFObjectFile<ELFT> *v) {
78 return v->isDyldType();
84// The MemoryBuffer passed into this constructor is just a wrapper around the
85// actual memory. Ultimately, the Binary parent class will take ownership of
86// this MemoryBuffer object but not the underlying memory.
90 this->isDyldELFObject =
true;
97 if (
auto E = Obj.takeError())
99 std::unique_ptr<DyldELFObject<ELFT>>
Ret(
100 new DyldELFObject<ELFT>(std::move(*Obj)));
101 return std::move(Ret);
105void DyldELFObject<ELFT>::updateSectionAddress(
const SectionRef &Sec,
109 const_cast<Elf_Shdr *
>(
reinterpret_cast<const Elf_Shdr *
>(ShdrRef.
p));
111 // This assumes the address passed in matches the target address bitness
112 // The template-based type cast handles everything else.
113 shdr->sh_addr =
static_cast<addr_type
>(Addr);
117void DyldELFObject<ELFT>::updateSymbolAddress(
const SymbolRef &SymRef,
120 Elf_Sym *sym =
const_cast<Elf_Sym *
>(
123 // This assumes the address passed in matches the target address bitness
124 // The template-based type cast handles everything else.
125 sym->st_value =
static_cast<addr_type
>(Addr);
128class LoadedELFObjectInfo final
130 RuntimeDyld::LoadedObjectInfo> {
132 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
133 : LoadedObjectInfoHelper(RTDyld, std::
move(ObjSecToIDMap)) {}
135 OwningBinary<ObjectFile>
136 getObjectForDebug(
const ObjectFile &Obj)
const override;
139template <
typename ELFT>
142 const LoadedELFObjectInfo &L) {
143 typedef typename ELFT::Shdr Elf_Shdr;
144 typedef typename ELFT::uint addr_type;
147 DyldELFObject<ELFT>::create(Buffer);
151 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
153 // Iterate over all sections in the object.
155 for (
const auto &Sec : Obj->sections()) {
162 if (*NameOrErr !=
"") {
164 Elf_Shdr *shdr =
const_cast<Elf_Shdr *
>(
165 reinterpret_cast<const Elf_Shdr *
>(ShdrRef.
p));
167 if (
uint64_t SecLoadAddr =
L.getSectionLoadAddress(*
SI)) {
168 // This assumes that the address passed in matches the target address
169 // bitness. The template-based type cast handles everything else.
170 shdr->sh_addr =
static_cast<addr_type
>(SecLoadAddr);
176 return std::move(Obj);
180createELFDebugObject(
const ObjectFile &Obj,
const LoadedELFObjectInfo &L) {
183 std::unique_ptr<MemoryBuffer> Buffer =
190 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
193 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
196 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
199 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
208LoadedELFObjectInfo::getObjectForDebug(
const ObjectFile &Obj)
const {
209 return createELFDebugObject(Obj, *
this);
212}
// anonymous namespace
222 for (
SID EHFrameSID : UnregisteredEHFrameSections) {
225 size_t EHFrameSize =
Sections[EHFrameSID].getSize();
226 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
228 UnregisteredEHFrameSections.clear();
231std::unique_ptr<RuntimeDyldELF>
246std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
249 return std::make_unique<LoadedELFObjectInfo>(*
this, *ObjSectionToIDOrErr);
258void RuntimeDyldELF::resolveX86_64Relocation(
const SectionEntry &Section,
266 case ELF::R_X86_64_NONE:
268 case ELF::R_X86_64_8: {
272 *Section.getAddressWithOffset(
Offset) = TruncatedAddr;
274 <<
format(
"%p\n", Section.getAddressWithOffset(
Offset)));
277 case ELF::R_X86_64_16: {
281 support::ulittle16_t::ref(Section.getAddressWithOffset(
Offset)) =
284 <<
format(
"%p\n", Section.getAddressWithOffset(
Offset)));
287 case ELF::R_X86_64_64: {
288 support::ulittle64_t::ref(
Section.getAddressWithOffset(
Offset)) =
294 case ELF::R_X86_64_32:
295 case ELF::R_X86_64_32S: {
298 (
Type == ELF::R_X86_64_32S &&
299 ((int64_t)
Value <= INT32_MAX && (int64_t)
Value >= INT32_MIN)));
300 uint32_t TruncatedAddr = (
Value & 0xFFFFFFFF);
301 support::ulittle32_t::ref(
Section.getAddressWithOffset(
Offset)) =
307 case ELF::R_X86_64_PC8: {
308 uint64_t FinalAddress =
Section.getLoadAddressWithOffset(
Offset);
309 int64_t RealOffset =
Value + Addend - FinalAddress;
311 int8_t TruncOffset = (RealOffset & 0xFF);
315 case ELF::R_X86_64_PC32: {
316 uint64_t FinalAddress =
Section.getLoadAddressWithOffset(
Offset);
317 int64_t RealOffset =
Value + Addend - FinalAddress;
319 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
320 support::ulittle32_t::ref(
Section.getAddressWithOffset(
Offset)) =
324 case ELF::R_X86_64_PC64: {
325 uint64_t FinalAddress =
Section.getLoadAddressWithOffset(
Offset);
326 int64_t RealOffset =
Value + Addend - FinalAddress;
327 support::ulittle64_t::ref(
Section.getAddressWithOffset(
Offset)) =
330 <<
format(
"%p\n", FinalAddress));
333 case ELF::R_X86_64_GOTOFF64: {
334 // Compute Value - GOTBase.
335 uint64_t GOTBase = 0;
336 for (
const auto &Section :
Sections) {
337 if (
Section.getName() ==
".got") {
338 GOTBase =
Section.getLoadAddressWithOffset(0);
342 assert(GOTBase != 0 &&
"missing GOT");
343 int64_t GOTOffset =
Value - GOTBase + Addend;
344 support::ulittle64_t::ref(
Section.getAddressWithOffset(
Offset)) = GOTOffset;
347 case ELF::R_X86_64_DTPMOD64: {
348 // We only have one DSO, so the module id is always 1.
349 support::ulittle64_t::ref(
Section.getAddressWithOffset(
Offset)) = 1;
352 case ELF::R_X86_64_DTPOFF64:
353 case ELF::R_X86_64_TPOFF64: {
354 // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
355 // offset in the *initial* TLS block. Since we are statically linking, all
356 // TLS blocks already exist in the initial block, so resolve both
357 // relocations equally.
358 support::ulittle64_t::ref(
Section.getAddressWithOffset(
Offset)) =
362 case ELF::R_X86_64_DTPOFF32:
363 case ELF::R_X86_64_TPOFF32: {
364 // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
365 // be resolved equally.
366 int64_t RealValue =
Value + Addend;
367 assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX);
368 int32_t TruncValue = RealValue;
369 support::ulittle32_t::ref(
Section.getAddressWithOffset(
Offset)) =
376void RuntimeDyldELF::resolveX86Relocation(
const SectionEntry &Section,
378 uint32_t
Type, int32_t Addend) {
380 case ELF::R_386_32: {
381 support::ulittle32_t::ref(
Section.getAddressWithOffset(
Offset)) =
385 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
386 // reach any 32 bit address.
387 case ELF::R_386_PLT32:
388 case ELF::R_386_PC32: {
389 uint32_t FinalAddress =
391 uint32_t RealOffset =
Value + Addend - FinalAddress;
392 support::ulittle32_t::ref(
Section.getAddressWithOffset(
Offset)) =
397 // There are other relocation types, but it appears these are the
398 // only ones currently used by the LLVM ELF object writer
404void RuntimeDyldELF::resolveAArch64Relocation(
const SectionEntry &Section,
406 uint32_t
Type, int64_t Addend) {
407 uint32_t *TargetPtr =
408 reinterpret_cast<uint32_t *
>(
Section.getAddressWithOffset(
Offset));
409 uint64_t FinalAddress =
Section.getLoadAddressWithOffset(
Offset);
410 // Data should use target endian. Code should always use little endian.
415 <<
" FinalAddress: 0x" <<
format(
"%llx", FinalAddress)
416 <<
" Value: 0x" <<
format(
"%llx",
Value) <<
" Type: 0x"
418 <<
format(
"%llx", Addend) <<
"\n");
424 case ELF::R_AARCH64_NONE:
426 case ELF::R_AARCH64_ABS16: {
429 (Result >> 16) == 0);
430 write(isBE, TargetPtr,
static_cast<uint16_t
>(Result & 0xffffU));
433 case ELF::R_AARCH64_ABS32: {
436 (Result >> 32) == 0);
437 write(isBE, TargetPtr,
static_cast<uint32_t
>(Result & 0xffffffffU));
440 case ELF::R_AARCH64_ABS64:
443 case ELF::R_AARCH64_PLT32: {
445 assert(
static_cast<int64_t
>(Result) >= INT32_MIN &&
446 static_cast<int64_t
>(Result) <= INT32_MAX);
447 write(isBE, TargetPtr,
static_cast<uint32_t
>(Result));
450 case ELF::R_AARCH64_PREL16: {
452 assert(
static_cast<int64_t
>(Result) >= INT16_MIN &&
453 static_cast<int64_t
>(Result) <= UINT16_MAX);
454 write(isBE, TargetPtr,
static_cast<uint16_t
>(Result & 0xffffU));
457 case ELF::R_AARCH64_PREL32: {
459 assert(
static_cast<int64_t
>(Result) >= INT32_MIN &&
460 static_cast<int64_t
>(Result) <= UINT32_MAX);
461 write(isBE, TargetPtr,
static_cast<uint32_t
>(Result & 0xffffffffU));
464 case ELF::R_AARCH64_PREL64:
465 write(isBE, TargetPtr,
Value + Addend - FinalAddress);
467 case ELF::R_AARCH64_CONDBR19: {
468 uint64_t BranchImm =
Value + Addend - FinalAddress;
471 *TargetPtr &= 0xff00001fU;
472 // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
473 or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3);
476 case ELF::R_AARCH64_TSTBR14: {
477 uint64_t BranchImm =
Value + Addend - FinalAddress;
484 // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
485 or32le(TargetPtr, (BranchImm & 0x0000FFFC) << 3);
488 case ELF::R_AARCH64_CALL26:
// fallthrough
489 case ELF::R_AARCH64_JUMP26: {
490 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
492 uint64_t BranchImm =
Value + Addend - FinalAddress;
494 // "Check that -2^27 <= result < 2^27".
496 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
499 case ELF::R_AARCH64_MOVW_UABS_G3:
500 or32le(TargetPtr, ((
Value + Addend) & 0xFFFF000000000000) >> 43);
502 case ELF::R_AARCH64_MOVW_UABS_G2_NC:
503 or32le(TargetPtr, ((
Value + Addend) & 0xFFFF00000000) >> 27);
505 case ELF::R_AARCH64_MOVW_UABS_G1_NC:
506 or32le(TargetPtr, ((
Value + Addend) & 0xFFFF0000) >> 11);
508 case ELF::R_AARCH64_MOVW_UABS_G0_NC:
509 or32le(TargetPtr, ((
Value + Addend) & 0xFFFF) << 5);
511 case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
512 // Operation: Page(S+A) - Page(P)
514 ((
Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
516 // Check that -2^32 <= X < 2^32
519 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
520 // from bits 32:12 of X.
524 case ELF::R_AARCH64_ADD_ABS_LO12_NC:
526 // Immediate goes in bits 21:10 of LD/ST instruction, taken
527 // from bits 11:0 of X
530 case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
532 // Immediate goes in bits 21:10 of LD/ST instruction, taken
533 // from bits 11:0 of X
536 case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
538 // Immediate goes in bits 21:10 of LD/ST instruction, taken
539 // from bits 11:1 of X
542 case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
544 // Immediate goes in bits 21:10 of LD/ST instruction, taken
545 // from bits 11:2 of X
548 case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
550 // Immediate goes in bits 21:10 of LD/ST instruction, taken
551 // from bits 11:3 of X
554 case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
556 // Immediate goes in bits 21:10 of LD/ST instruction, taken
557 // from bits 11:4 of X
560 case ELF::R_AARCH64_LD_PREL_LO19: {
561 // Operation: S + A - P
564 // "Check that -2^20 <= result < 2^20".
567 *TargetPtr &= 0xff00001fU;
568 // Immediate goes in bits 23:5 of LD imm instruction, taken
569 // from bits 20:2 of X
570 *TargetPtr |= ((
Result & 0xffc) << (5 - 2));
573 case ELF::R_AARCH64_ADR_PREL_LO21: {
574 // Operation: S + A - P
577 // "Check that -2^20 <= result < 2^20".
580 *TargetPtr &= 0x9f00001fU;
581 // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
582 // from bits 20:0 of X
583 *TargetPtr |= ((
Result & 0xffc) << (5 - 2));
584 *TargetPtr |= (
Result & 0x3) << 29;
590void RuntimeDyldELF::resolveARMRelocation(
const SectionEntry &Section,
592 uint32_t
Type, int32_t Addend) {
593 // TODO: Add Thumb relocations.
594 uint32_t *TargetPtr =
595 reinterpret_cast<uint32_t *
>(
Section.getAddressWithOffset(
Offset));
596 uint32_t FinalAddress =
Section.getLoadAddressWithOffset(
Offset) & 0xFFFFFFFF;
601 <<
" FinalAddress: " <<
format(
"%p", FinalAddress)
604 <<
" Addend: " <<
format(
"%x", Addend) <<
"\n");
610 case ELF::R_ARM_NONE:
612 // Write a 31bit signed offset
613 case ELF::R_ARM_PREL31:
614 support::ulittle32_t::ref{TargetPtr} =
615 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
616 ((
Value - FinalAddress) & ~0x80000000);
618 case ELF::R_ARM_TARGET1:
619 case ELF::R_ARM_ABS32:
620 support::ulittle32_t::ref{TargetPtr} =
Value;
622 // Write first 16 bit of 32 bit value to the mov instruction.
623 // Last 4 bit should be shifted.
624 case ELF::R_ARM_MOVW_ABS_NC:
625 case ELF::R_ARM_MOVT_ABS:
626 if (
Type == ELF::R_ARM_MOVW_ABS_NC)
628 else if (
Type == ELF::R_ARM_MOVT_ABS)
630 support::ulittle32_t::ref{TargetPtr} =
631 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (
Value & 0xFFF) |
632 (((
Value >> 12) & 0xF) << 16);
634 // Write 24 bit relative value to the branch instruction.
635 case ELF::R_ARM_PC24:
// Fall through.
636 case ELF::R_ARM_CALL:
// Fall through.
637 case ELF::R_ARM_JUMP24:
638 int32_t RelValue =
static_cast<int32_t
>(
Value - FinalAddress - 8);
639 RelValue = (RelValue & 0x03FFFFFC) >> 2;
640 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
641 support::ulittle32_t::ref{TargetPtr} =
642 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
647bool RuntimeDyldELF::resolveLoongArch64ShortBranch(
651 if (
Value.SymbolName) {
653 // Don't create direct branch for external symbols.
656 const auto &SymInfo = Loc->second;
658 SymInfo.getOffset());
663 uint64_t SourceAddress =
Sections[SectionID].getLoadAddressWithOffset(
Offset);
664 uint64_t Delta =
Address +
Value.Addend - SourceAddress;
666 if (RelI->
getType() == ELF::R_LARCH_B26) {
673 // Medium call: R_LARCH_CALL36
674 // Range: [-128G - 0x20000, +128G - 0x20000)
682void RuntimeDyldELF::resolveLoongArch64Branch(
unsigned SectionID,
686 LLVM_DEBUG(
dbgs() <<
"\t\tThis is an LoongArch64 branch relocation.\n");
688 if (resolveLoongArch64ShortBranch(SectionID, RelI,
Value))
693 unsigned RelType = RelI->
getType();
694 // Look for an existing stub.
697 resolveRelocation(Section,
Offset,
698 (uint64_t)
Section.getAddressWithOffset(It->second),
703 // Create a new stub function.
705 It->second =
Section.getStubOffset();
706 uint8_t *StubTargetAddr =
708 RelocationEntry LU12I_W(SectionID, StubTargetAddr -
Section.getAddress(),
709 ELF::R_LARCH_ABS_HI20,
Value.Addend);
710 RelocationEntry ORI(SectionID, StubTargetAddr -
Section.getAddress() + 4,
711 ELF::R_LARCH_ABS_LO12,
Value.Addend);
712 RelocationEntry LU32I_D(SectionID, StubTargetAddr -
Section.getAddress() + 8,
713 ELF::R_LARCH_ABS64_LO20,
Value.Addend);
714 RelocationEntry LU52I_D(SectionID, StubTargetAddr -
Section.getAddress() + 12,
715 ELF::R_LARCH_ABS64_HI12,
Value.Addend);
716 if (
Value.SymbolName) {
728 resolveRelocation(Section,
Offset,
729 reinterpret_cast<uint64_t
>(
735// Returns extract bits Val[Hi:Lo].
737 return Hi == 63 ? Val >>
Lo : (Val & (((1ULL << (
Hi + 1)) - 1))) >>
Lo;
740// Calculate the adjusted page delta between dest and PC. The code is copied
741// from lld and see comments there for more details.
746 case ELF::R_LARCH_PCALA64_LO20:
747 case ELF::R_LARCH_GOT64_PC_LO20:
748 pcalau12i_pc = pc - 8;
750 case ELF::R_LARCH_PCALA64_HI12:
751 case ELF::R_LARCH_GOT64_PC_HI12:
752 pcalau12i_pc = pc - 12;
758 uint64_t result = (dest & ~0xfffULL) - (pcalau12i_pc & ~0xfffULL);
760 result += 0x1000 - 0x1'0000'0000;
761 if (result & 0x8000'0000)
762 result += 0x1'0000'0000;
766void RuntimeDyldELF::resolveLoongArch64Relocation(
const SectionEntry &Section,
770 auto *TargetPtr = Section.getAddressWithOffset(
Offset);
773 LLVM_DEBUG(
dbgs() <<
"resolveLoongArch64Relocation, LocalAddress: 0x"
775 <<
" FinalAddress: 0x" <<
format(
"%llx", FinalAddress)
776 <<
" Value: 0x" <<
format(
"%llx",
Value) <<
" Type: 0x"
778 <<
format(
"%llx", Addend) <<
"\n");
784 case ELF::R_LARCH_MARK_LA:
787 case ELF::R_LARCH_32:
788 support::ulittle32_t::ref{TargetPtr} =
789 static_cast<uint32_t
>(
Value + Addend);
791 case ELF::R_LARCH_64:
792 support::ulittle64_t::ref{TargetPtr} =
Value + Addend;
794 case ELF::R_LARCH_32_PCREL:
795 support::ulittle32_t::ref{TargetPtr} =
796 static_cast<uint32_t
>(
Value + Addend - FinalAddress);
798 case ELF::R_LARCH_B26: {
799 uint64_t B26 = (
Value + Addend - FinalAddress) >> 2;
800 auto Instr = support::ulittle32_t::ref(TargetPtr);
801 uint32_t Imm15_0 =
extractBits(B26,
/*Hi=*/15,
/*Lo=*/0) << 10;
802 uint32_t Imm25_16 =
extractBits(B26,
/*Hi=*/25,
/*Lo=*/16);
803 Instr = (
Instr & 0xfc000000) | Imm15_0 | Imm25_16;
806 case ELF::R_LARCH_CALL36: {
807 uint64_t Call36 = (
Value + Addend - FinalAddress) >> 2;
808 auto Pcaddu18i = support::ulittle32_t::ref(TargetPtr);
810 extractBits((Call36 + (1UL << 15)),
/*Hi=*/35,
/*Lo=*/16) << 5;
811 Pcaddu18i = (Pcaddu18i & 0xfe00001f) | Imm35_16;
812 auto Jirl = support::ulittle32_t::ref(TargetPtr + 4);
813 uint32_t Imm15_0 =
extractBits(Call36,
/*Hi=*/15,
/*Lo=*/0) << 10;
814 Jirl = (Jirl & 0xfc0003ff) | Imm15_0;
817 case ELF::R_LARCH_GOT_PC_HI20:
818 case ELF::R_LARCH_PCALA_HI20: {
821 auto Instr = support::ulittle32_t::ref(TargetPtr);
822 uint32_t Imm31_12 =
extractBits(PageDelta,
/*Hi=*/31,
/*Lo=*/12) << 5;
826 case ELF::R_LARCH_GOT_PC_LO12:
827 case ELF::R_LARCH_PCALA_LO12: {
828 uint64_t TargetOffset = (
Value + Addend) & 0xfff;
829 auto Instr = support::ulittle32_t::ref(TargetPtr);
830 uint32_t Imm11_0 = TargetOffset << 10;
834 case ELF::R_LARCH_GOT64_PC_LO20:
835 case ELF::R_LARCH_PCALA64_LO20: {
838 auto Instr = support::ulittle32_t::ref(TargetPtr);
839 uint32_t Imm51_32 =
extractBits(PageDelta,
/*Hi=*/51,
/*Lo=*/32) << 5;
843 case ELF::R_LARCH_GOT64_PC_HI12:
844 case ELF::R_LARCH_PCALA64_HI12: {
847 auto Instr = support::ulittle32_t::ref(TargetPtr);
848 uint32_t Imm63_52 =
extractBits(PageDelta,
/*Hi=*/63,
/*Lo=*/52) << 10;
852 case ELF::R_LARCH_ABS_HI20: {
854 auto Instr = support::ulittle32_t::ref(TargetPtr);
855 uint32_t Imm31_12 =
extractBits(Target,
/*Hi=*/31,
/*Lo=*/12) << 5;
859 case ELF::R_LARCH_ABS_LO12: {
861 auto Instr = support::ulittle32_t::ref(TargetPtr);
862 uint32_t Imm11_0 =
extractBits(Target,
/*Hi=*/11,
/*Lo=*/0) << 10;
866 case ELF::R_LARCH_ABS64_LO20: {
868 auto Instr = support::ulittle32_t::ref(TargetPtr);
869 uint32_t Imm51_32 =
extractBits(Target,
/*Hi=*/51,
/*Lo=*/32) << 5;
873 case ELF::R_LARCH_ABS64_HI12: {
875 auto Instr = support::ulittle32_t::ref(TargetPtr);
876 uint32_t Imm63_52 =
extractBits(Target,
/*Hi=*/63,
/*Lo=*/52) << 10;
880 case ELF::R_LARCH_ADD32:
881 support::ulittle32_t::ref{TargetPtr} =
882 (support::ulittle32_t::ref{TargetPtr} +
883 static_cast<uint32_t
>(
Value + Addend));
885 case ELF::R_LARCH_SUB32:
886 support::ulittle32_t::ref{TargetPtr} =
887 (support::ulittle32_t::ref{TargetPtr} -
888 static_cast<uint32_t
>(
Value + Addend));
890 case ELF::R_LARCH_ADD64:
891 support::ulittle64_t::ref{TargetPtr} =
892 (support::ulittle64_t::ref{TargetPtr} +
Value + Addend);
894 case ELF::R_LARCH_SUB64:
895 support::ulittle64_t::ref{TargetPtr} =
896 (support::ulittle64_t::ref{TargetPtr} -
Value - Addend);
901void RuntimeDyldELF::setMipsABI(
const ObjectFile &Obj) {
910 unsigned AbiVariant =
E->getPlatformFlags();
917// Return the .TOC. section and offset.
918Error RuntimeDyldELF::findPPC64TOCSection(
const ELFObjectFileBase &Obj,
919 ObjSectionToIDMap &LocalSections,
921 // Set a default SectionID in case we do not find a TOC section below.
922 // This may happen for references to TOC base base (sym@toc, .odp
923 // relocation) without a .toc directive. In this case just use the
924 // first section (which is usually the .odp) since the code won't
925 // reference the .toc base directly.
929 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
930 // order. The TOC starts where the first of these sections starts.
931 for (
auto &Section : Obj.
sections()) {
932 Expected<StringRef> NameOrErr =
Section.getName();
937 if (SectionName ==
".got"
938 || SectionName ==
".toc"
939 || SectionName ==
".tocbss"
940 || SectionName ==
".plt") {
941 if (
auto SectionIDOrErr =
945 return SectionIDOrErr.takeError();
950 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
951 // thus permitting a full 64 Kbytes segment.
957// Returns the sections and offset associated with the ODP entry referenced
959Error RuntimeDyldELF::findOPDEntrySection(
const ELFObjectFileBase &Obj,
960 ObjSectionToIDMap &LocalSections,
962 // Get the ELF symbol value (st_value) to compare with Relocation offset in
967 Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
975 Expected<StringRef> NameOrErr = RelSecI->
getName();
978 StringRef RelSectionName = *NameOrErr;
980 if (RelSectionName !=
".opd")
983 for (elf_relocation_iterator i = si->relocation_begin(),
984 e = si->relocation_end();
986 // The R_PPC64_ADDR64 relocation indicates the first field
988 uint64_t TypeFunc = i->getType();
989 if (TypeFunc != ELF::R_PPC64_ADDR64) {
994 uint64_t TargetSymbolOffset = i->getOffset();
995 symbol_iterator TargetSymbol = i->getSymbol();
997 if (
auto AddendOrErr = i->getAddend())
998 Addend = *AddendOrErr;
1000 return AddendOrErr.takeError();
1006 // Just check if following relocation is a R_PPC64_TOC
1007 uint64_t TypeTOC = i->getType();
1008 if (TypeTOC != ELF::R_PPC64_TOC)
1011 // Finally compares the Symbol value and the target symbol offset
1012 // to check if this .opd entry refers to the symbol the relocation
1014 if (Rel.
Addend != (int64_t)TargetSymbolOffset)
1018 if (
auto TSIOrErr = TargetSymbol->
getSection())
1021 return TSIOrErr.takeError();
1024 bool IsCode = TSI->
isText();
1029 return SectionIDOrErr.takeError();
1030 Rel.
Addend = (intptr_t)Addend;
1037// Relocation masks following the #lo(value), #hi(value), #ha(value),
1038// #higher(value), #highera(value), #highest(value), and #highesta(value)
1039// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
1045 return (value >> 16) & 0xffff;
1049 return ((value + 0x8000) >> 16) & 0xffff;
1053 return (value >> 32) & 0xffff;
1057 return ((value + 0x8000) >> 32) & 0xffff;
1061 return (value >> 48) & 0xffff;
1065 return ((value + 0x8000) >> 48) & 0xffff;
1068void RuntimeDyldELF::resolvePPC32Relocation(
const SectionEntry &Section,
1071 uint8_t *LocalAddress = Section.getAddressWithOffset(
Offset);
1076 case ELF::R_PPC_ADDR16_LO:
1079 case ELF::R_PPC_ADDR16_HI:
1082 case ELF::R_PPC_ADDR16_HA:
1088void RuntimeDyldELF::resolvePPC64Relocation(
const SectionEntry &Section,
1090 uint32_t
Type, int64_t Addend) {
1091 uint8_t *LocalAddress =
Section.getAddressWithOffset(
Offset);
1096 case ELF::R_PPC64_ADDR16:
1099 case ELF::R_PPC64_ADDR16_DS:
1102 case ELF::R_PPC64_ADDR16_LO:
1105 case ELF::R_PPC64_ADDR16_LO_DS:
1108 case ELF::R_PPC64_ADDR16_HI:
1109 case ELF::R_PPC64_ADDR16_HIGH:
1112 case ELF::R_PPC64_ADDR16_HA:
1113 case ELF::R_PPC64_ADDR16_HIGHA:
1116 case ELF::R_PPC64_ADDR16_HIGHER:
1119 case ELF::R_PPC64_ADDR16_HIGHERA:
1122 case ELF::R_PPC64_ADDR16_HIGHEST:
1125 case ELF::R_PPC64_ADDR16_HIGHESTA:
1128 case ELF::R_PPC64_ADDR14: {
1130 // Preserve the AA/LK bits in the branch instruction
1131 uint8_t aalk = *(LocalAddress + 3);
1134 case ELF::R_PPC64_REL16_LO: {
1135 uint64_t FinalAddress =
Section.getLoadAddressWithOffset(
Offset);
1136 uint64_t Delta =
Value - FinalAddress + Addend;
1139 case ELF::R_PPC64_REL16_HI: {
1140 uint64_t FinalAddress =
Section.getLoadAddressWithOffset(
Offset);
1141 uint64_t Delta =
Value - FinalAddress + Addend;
1144 case ELF::R_PPC64_REL16_HA: {
1145 uint64_t FinalAddress =
Section.getLoadAddressWithOffset(
Offset);
1146 uint64_t Delta =
Value - FinalAddress + Addend;
1149 case ELF::R_PPC64_ADDR32: {
1150 int64_t
Result =
static_cast<int64_t
>(
Value + Addend);
1155 case ELF::R_PPC64_REL24: {
1156 uint64_t FinalAddress =
Section.getLoadAddressWithOffset(
Offset);
1157 int64_t delta =
static_cast<int64_t
>(
Value - FinalAddress + Addend);
1160 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
1162 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
1164 case ELF::R_PPC64_REL32: {
1165 uint64_t FinalAddress =
Section.getLoadAddressWithOffset(
Offset);
1166 int64_t delta =
static_cast<int64_t
>(
Value - FinalAddress + Addend);
1171 case ELF::R_PPC64_REL64: {
1172 uint64_t FinalAddress =
Section.getLoadAddressWithOffset(
Offset);
1173 uint64_t Delta =
Value - FinalAddress + Addend;
1176 case ELF::R_PPC64_ADDR64:
1182void RuntimeDyldELF::resolveSystemZRelocation(
const SectionEntry &Section,
1184 uint32_t
Type, int64_t Addend) {
1185 uint8_t *LocalAddress =
Section.getAddressWithOffset(
Offset);
1190 case ELF::R_390_PC16DBL:
1191 case ELF::R_390_PLT16DBL: {
1193 assert(int16_t(Delta / 2) * 2 == Delta &&
"R_390_PC16DBL overflow");
1197 case ELF::R_390_PC32DBL:
1198 case ELF::R_390_PLT32DBL: {
1200 assert(int32_t(Delta / 2) * 2 == Delta &&
"R_390_PC32DBL overflow");
1204 case ELF::R_390_PC16: {
1206 assert(int16_t(Delta) == Delta &&
"R_390_PC16 overflow");
1210 case ELF::R_390_PC32: {
1212 assert(int32_t(Delta) == Delta &&
"R_390_PC32 overflow");
1216 case ELF::R_390_PC64: {
1222 *LocalAddress = (uint8_t)(
Value + Addend);
1236void RuntimeDyldELF::resolveBPFRelocation(
const SectionEntry &Section,
1238 uint32_t
Type, int64_t Addend) {
1245 case ELF::R_BPF_NONE:
1246 case ELF::R_BPF_64_64:
1247 case ELF::R_BPF_64_32:
1248 case ELF::R_BPF_64_NODYLD32:
1250 case ELF::R_BPF_64_ABS64: {
1256 case ELF::R_BPF_64_ABS32: {
1268 uint32_t UpperImm = (Imm + 0x800) & 0xfffff000;
1269 auto Instr = support::ulittle32_t::ref(InstrAddr);
1270 Instr = (Instr & 0xfff) | UpperImm;
1275 auto Instr = support::ulittle32_t::ref(InstrAddr);
1276 Instr = (Instr & 0xfffff) | (LowerImm << 20);
1279void RuntimeDyldELF::resolveRISCVRelocation(
const SectionEntry &Section,
1285 std::string Err =
"Unimplemented reloc type: " + std::to_string(
Type);
1288 // 32-bit PC-relative function call, macros call, tail (PIC)
1289 // Write first 20 bits of 32 bit value to the auipc instruction
1290 // Last 12 bits to the jalr instruction
1291 case ELF::R_RISCV_CALL:
1292 case ELF::R_RISCV_CALL_PLT: {
1294 uint64_t PCOffset =
Value + Addend -
P;
1299 // High 20 bits of 32-bit absolute address, %hi(symbol)
1300 case ELF::R_RISCV_HI20: {
1301 uint64_t PCOffset =
Value + Addend;
1305 // Low 12 bits of 32-bit absolute address, %lo(symbol)
1306 case ELF::R_RISCV_LO12_I: {
1307 uint64_t PCOffset =
Value + Addend;
1311 // High 20 bits of 32-bit PC-relative reference, %pcrel_hi(symbol)
1312 case ELF::R_RISCV_GOT_HI20:
1313 case ELF::R_RISCV_PCREL_HI20: {
1315 uint64_t PCOffset =
Value + Addend -
P;
1321 // auipc a0, %pcrel_hi(symbol) // R_RISCV_PCREL_HI20
1322 // addi a0, a0, %pcrel_lo(label) // R_RISCV_PCREL_LO12_I
1324 // The low 12 bits of relative address between pc and symbol.
1325 // The symbol is related to the high part instruction which is marked by
1327 case ELF::R_RISCV_PCREL_LO12_I: {
1328 for (
auto &&PendingReloc : PendingRelocs) {
1329 const RelocationValueRef &MatchingValue = PendingReloc.first;
1330 RelocationEntry &Reloc = PendingReloc.second;
1331 uint64_t HIRelocPC =
1333 if (
Value + Addend == HIRelocPC) {
1336 auto PCOffset =
Symbol - HIRelocPC;
1343 "R_RISCV_PCREL_LO12_I without matching R_RISCV_PCREL_HI20");
1345 case ELF::R_RISCV_32_PCREL: {
1346 uint64_t FinalAddress =
Section.getLoadAddressWithOffset(
Offset);
1347 int64_t RealOffset =
Value + Addend - FinalAddress;
1348 int32_t TruncOffset =
Lo_32(RealOffset);
1349 support::ulittle32_t::ref(
Section.getAddressWithOffset(
Offset)) =
1353 case ELF::R_RISCV_32: {
1354 auto Ref = support::ulittle32_t::ref(
Section.getAddressWithOffset(
Offset));
1358 case ELF::R_RISCV_64: {
1359 auto Ref = support::ulittle64_t::ref(
Section.getAddressWithOffset(
Offset));
1363 case ELF::R_RISCV_ADD8: {
1368 case ELF::R_RISCV_ADD16: {
1369 auto Ref = support::ulittle16_t::ref(
Section.getAddressWithOffset(
Offset));
1373 case ELF::R_RISCV_ADD32: {
1374 auto Ref = support::ulittle32_t::ref(
Section.getAddressWithOffset(
Offset));
1378 case ELF::R_RISCV_ADD64: {
1379 auto Ref = support::ulittle64_t::ref(
Section.getAddressWithOffset(
Offset));
1383 case ELF::R_RISCV_SUB8: {
1388 case ELF::R_RISCV_SUB16: {
1389 auto Ref = support::ulittle16_t::ref(
Section.getAddressWithOffset(
Offset));
1393 case ELF::R_RISCV_SUB32: {
1394 auto Ref = support::ulittle32_t::ref(
Section.getAddressWithOffset(
Offset));
1398 case ELF::R_RISCV_SUB64: {
1399 auto Ref = support::ulittle64_t::ref(
Section.getAddressWithOffset(
Offset));
1403 case ELF::R_RISCV_SET8: {
1408 case ELF::R_RISCV_SET16: {
1409 auto Ref = support::ulittle16_t::ref(
Section.getAddressWithOffset(
Offset));
1413 case ELF::R_RISCV_SET32: {
1414 auto Ref = support::ulittle32_t::ref(
Section.getAddressWithOffset(
Offset));
1421// The target location for the relocation is described by RE.SectionID and
1422// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
1423// SectionEntry has three members describing its location.
1424// SectionEntry::Address is the address at which the section has been loaded
1425// into memory in the current (host) process. SectionEntry::LoadAddress is the
1426// address that the section will have in the target process.
1427// SectionEntry::ObjAddress is the address of the bits for this section in the
1428// original emitted object image (also in the current address space).
1430// Relocations will be applied as if the section were loaded at
1431// SectionEntry::LoadAddress, but they will be applied at an address based
1432// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
1433// Target memory contents if they are required for value calculations.
1435// The Value parameter here is the load address of the symbol for the
1436// relocation to be applied. For relocations which refer to symbols in the
1437// current object Value will be the LoadAddress of the section in which
1438// the symbol resides (RE.Addend provides additional information about the
1439// symbol location). For external symbols, Value will be the address of the
1440// symbol in the target address space.
1448void RuntimeDyldELF::resolveRelocation(
const SectionEntry &Section,
1451 uint64_t SymOffset, SID SectionID) {
1454 resolveX86_64Relocation(Section,
Offset,
Value,
Type, Addend, SymOffset);
1491 resolveRISCVRelocation(Section,
Offset,
Value,
Type, Addend, SectionID);
1498void *RuntimeDyldELF::computePlaceholderAddress(
unsigned SectionID,
1504 RelocationEntry RE(SectionID,
Offset, RelType,
Value.Addend,
Value.Offset);
1505 if (
Value.SymbolName)
1511uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1512 bool IsLocal)
const {
1514 case ELF::R_MICROMIPS_GOT16:
1516 return ELF::R_MICROMIPS_LO16;
1518 case ELF::R_MICROMIPS_HI16:
1519 return ELF::R_MICROMIPS_LO16;
1520 case ELF::R_MIPS_GOT16:
1522 return ELF::R_MIPS_LO16;
1524 case ELF::R_MIPS_HI16:
1525 return ELF::R_MIPS_LO16;
1526 case ELF::R_MIPS_PCHI16:
1527 return ELF::R_MIPS_PCLO16;
1531 return ELF::R_MIPS_NONE;
1534// Sometimes we don't need to create thunk for a branch.
1535// This typically happens when branch target is located
1536// in the same object file. In such case target is either
1537// a weak symbol or symbol in a different executable section.
1538// This function checks if branch target is located in the
1539// same object file and if distance between source and target
1540// fits R_AARCH64_CALL26 relocation. If both conditions are
1541// met, it emits direct jump to the target and returns true.
1542// Otherwise false is returned and thunk is created.
1543bool RuntimeDyldELF::resolveAArch64ShortBranch(
1546 uint64_t TargetOffset;
1547 unsigned TargetSectionID;
1548 if (
Value.SymbolName) {
1551 // Don't create direct branch for external symbols.
1555 const auto &SymInfo = Loc->second;
1557 TargetSectionID = SymInfo.getSectionID();
1558 TargetOffset = SymInfo.getOffset();
1560 TargetSectionID =
Value.SectionID;
1564 // We don't actually know the load addresses at this point, so if the
1565 // branch is cross-section, we don't know exactly how far away it is.
1566 if (TargetSectionID != SectionID)
1569 uint64_t SourceOffset = RelI->
getOffset();
1571 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1572 // If distance between source and target is out of range then we should
1577 RelocationEntry RE(SectionID, SourceOffset, RelI->
getType(),
Value.Addend);
1578 if (
Value.SymbolName)
1586void RuntimeDyldELF::resolveAArch64Branch(
unsigned SectionID,
1591 LLVM_DEBUG(
dbgs() <<
"\t\tThis is an AArch64 branch relocation.");
1595 unsigned RelType = RelI->
getType();
1596 // Look for an existing stub.
1597 StubMap::const_iterator i = Stubs.find(
Value);
1598 if (i != Stubs.end()) {
1599 resolveRelocation(Section,
Offset,
1600 Section.getLoadAddressWithOffset(i->second), RelType, 0);
1602 }
else if (!resolveAArch64ShortBranch(SectionID, RelI,
Value)) {
1603 // Create a new stub function.
1609 RelocationEntry REmovz_g3(SectionID, StubTargetAddr -
Section.getAddress(),
1610 ELF::R_AARCH64_MOVW_UABS_G3,
Value.Addend);
1611 RelocationEntry REmovk_g2(SectionID,
1612 StubTargetAddr -
Section.getAddress() + 4,
1613 ELF::R_AARCH64_MOVW_UABS_G2_NC,
Value.Addend);
1614 RelocationEntry REmovk_g1(SectionID,
1615 StubTargetAddr -
Section.getAddress() + 8,
1616 ELF::R_AARCH64_MOVW_UABS_G1_NC,
Value.Addend);
1617 RelocationEntry REmovk_g0(SectionID,
1618 StubTargetAddr -
Section.getAddress() + 12,
1619 ELF::R_AARCH64_MOVW_UABS_G0_NC,
Value.Addend);
1621 if (
Value.SymbolName) {
1632 resolveRelocation(Section,
Offset,
1647 Addend = *AddendOrErr;
1652 // Obtain the symbol name which is referenced in the relocation
1655 if (
auto TargetNameOrErr = Symbol->getName())
1656 TargetName = *TargetNameOrErr;
1658 return TargetNameOrErr.takeError();
1660 LLVM_DEBUG(
dbgs() <<
"\t\tRelType: " << RelType <<
" Addend: " << Addend
1661 <<
" TargetName: " << TargetName <<
"\n");
1663 // First search for the symbol in the local symbol table
1666 // Search for the symbol in the global symbol table
1671 if (!SymTypeOrErr) {
1677 SymType = *SymTypeOrErr;
1680 const auto &
SymInfo = gsi->second;
1687 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1688 // and can be changed by another developers. Maybe best way is add
1689 // a new symbol type ST_Section to SymbolRef and use it.
1690 auto SectionOrErr = Symbol->getSection();
1691 if (!SectionOrErr) {
1701 bool isCode = si->
isText();
1704 Value.SectionID = *SectionIDOrErr;
1706 return SectionIDOrErr.takeError();
1707 Value.Addend = Addend;
1715 Value.Addend = Addend;
1717 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1718 // will manifest here as a NULL symbol name.
1719 // We can set this as a valid (but empty) symbol name, and rely
1720 // on addRelocationForSymbol to handle this.
1721 if (!
Value.SymbolName)
1722 Value.SymbolName =
"";
1736 if ((RelType == ELF::R_AARCH64_CALL26 ||
1737 RelType == ELF::R_AARCH64_JUMP26) &&
1738 MemMgr.allowStubAllocation()) {
1739 resolveAArch64Branch(SectionID,
Value, RelI, Stubs);
1740 }
else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1741 // Create new GOT entry or find existing one. If GOT entry is
1742 // to be created, then we also emit ABS64 relocation for it.
1743 uint64_t GOTOffset = findOrAllocGOTEntry(
Value, ELF::R_AARCH64_ABS64);
1744 resolveGOTOffsetRelocation(SectionID,
Offset, GOTOffset + Addend,
1745 ELF::R_AARCH64_ADR_PREL_PG_HI21);
1747 }
else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1748 uint64_t GOTOffset = findOrAllocGOTEntry(
Value, ELF::R_AARCH64_ABS64);
1749 resolveGOTOffsetRelocation(SectionID,
Offset, GOTOffset + Addend,
1750 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1752 processSimpleRelocation(SectionID,
Offset, RelType,
Value);
1755 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1756 RelType == ELF::R_ARM_JUMP24) {
1757 // This is an ARM branch relocation, need to use a stub function.
1761 // Look for an existing stub.
1762 auto [It, Inserted] = Stubs.try_emplace(
Value);
1764 resolveRelocation(Section,
Offset,
1765 Section.getLoadAddressWithOffset(It->second), RelType,
1769 // Create a new stub function.
1771 It->second = Section.getStubOffset();
1773 Section.getAddressWithOffset(Section.getStubOffset()));
1775 ELF::R_ARM_ABS32,
Value.Addend);
1776 if (
Value.SymbolName)
1783 Section.getLoadAddressWithOffset(Section.getStubOffset()), RelType,
1789 reinterpret_cast<uint32_t*
>(computePlaceholderAddress(SectionID,
Offset));
1790 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1791 RelType == ELF::R_ARM_ABS32) {
1792 Value.Addend += *Placeholder;
1793 }
else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1794 // See ELF for ARM documentation
1795 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1797 processSimpleRelocation(SectionID,
Offset, RelType,
Value);
1800 if ((RelType == ELF::R_LARCH_B26 || RelType == ELF::R_LARCH_CALL36) &&
1801 MemMgr.allowStubAllocation()) {
1802 resolveLoongArch64Branch(SectionID,
Value, RelI, Stubs);
1803 }
else if (RelType == ELF::R_LARCH_GOT_PC_HI20 ||
1804 RelType == ELF::R_LARCH_GOT_PC_LO12 ||
1805 RelType == ELF::R_LARCH_GOT64_PC_HI12 ||
1806 RelType == ELF::R_LARCH_GOT64_PC_LO20) {
1807 uint64_t GOTOffset = findOrAllocGOTEntry(
Value, ELF::R_LARCH_64);
1808 resolveGOTOffsetRelocation(SectionID,
Offset, GOTOffset + Addend,
1811 processSimpleRelocation(SectionID,
Offset, RelType,
Value);
1815 computePlaceholderAddress(SectionID,
Offset));
1817 if (RelType == ELF::R_MIPS_26) {
1818 // This is an Mips branch relocation, need to use a stub function.
1822 // Extract the addend from the instruction.
1823 // We shift up by two since the Value will be down shifted again
1824 // when applying the relocation.
1825 uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1827 Value.Addend += Addend;
1829 // Look up for existing stub.
1830 auto [It, Inserted] = Stubs.try_emplace(
Value);
1836 // Create a new stub function.
1838 It->second = Section.getStubOffset();
1843 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1845 // Creating Hi and Lo relocations for the filled stub instructions.
1846 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1847 ELF::R_MIPS_HI16,
Value.Addend);
1849 StubTargetAddr - Section.getAddress() + 4,
1850 ELF::R_MIPS_LO16,
Value.Addend);
1852 if (
Value.SymbolName) {
1864 }
else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1865 int64_t Addend = (Opcode & 0x0000ffff) << 16;
1867 PendingRelocs.push_back(std::make_pair(
Value, RE));
1868 }
else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1870 for (
auto I = PendingRelocs.begin();
I != PendingRelocs.end();) {
1873 if (MatchingValue ==
Value &&
1874 RelType == getMatchingLoRelocation(
Reloc.RelType) &&
1875 SectionID ==
Reloc.SectionID) {
1876 Reloc.Addend += Addend;
1877 if (
Value.SymbolName)
1881 I = PendingRelocs.erase(
I);
1886 if (
Value.SymbolName)
1891 if (RelType == ELF::R_MIPS_32)
1892 Value.Addend += Opcode;
1893 else if (RelType == ELF::R_MIPS_PC16)
1895 else if (RelType == ELF::R_MIPS_PC19_S2)
1897 else if (RelType == ELF::R_MIPS_PC21_S2)
1899 else if (RelType == ELF::R_MIPS_PC26_S2)
1901 processSimpleRelocation(SectionID,
Offset, RelType,
Value);
1906 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1907 || r_type == ELF::R_MIPS_GOT_DISP) {
1908 auto [
I, Inserted] = GOTSymbolOffsets.try_emplace(TargetName);
1910 I->second = allocateGOTEntries(1);
1912 if (
Value.SymbolName)
1916 }
else if (RelType == ELF::R_MIPS_26) {
1917 // This is an Mips branch relocation, need to use a stub function.
1921 // Look up for existing stub.
1922 StubMap::const_iterator i = Stubs.find(
Value);
1923 if (i != Stubs.end()) {
1928 // Create a new stub function.
1930 Stubs[
Value] = Section.getStubOffset();
1935 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1938 // Creating Hi and Lo relocations for the filled stub instructions.
1939 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1940 ELF::R_MIPS_HI16,
Value.Addend);
1942 StubTargetAddr - Section.getAddress() + 4,
1943 ELF::R_MIPS_LO16,
Value.Addend);
1944 if (
Value.SymbolName) {
1952 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1955 StubTargetAddr - Section.getAddress(),
1956 ELF::R_MIPS_HIGHEST,
Value.Addend);
1958 StubTargetAddr - Section.getAddress() + 4,
1959 ELF::R_MIPS_HIGHER,
Value.Addend);
1961 StubTargetAddr - Section.getAddress() + 12,
1962 ELF::R_MIPS_HI16,
Value.Addend);
1964 StubTargetAddr - Section.getAddress() + 20,
1965 ELF::R_MIPS_LO16,
Value.Addend);
1966 if (
Value.SymbolName) {
1983 processSimpleRelocation(SectionID,
Offset, RelType,
Value);
1987 if (RelType == ELF::R_PPC64_REL24) {
1988 // Determine ABI variant in use for this object.
1991 // A PPC branch relocation will need a stub function if the target is
1992 // an external symbol (either Value.SymbolName is set, or SymType is
1993 // Symbol::ST_Unknown) or if the target address is not within the
1994 // signed 24-bits branch address.
1997 bool RangeOverflow =
false;
2000 if (AbiVariant != 2) {
2001 // In the ELFv1 ABI, a function call may point to the .opd entry,
2002 // so the final symbol value is calculated based on the relocation
2003 // values in the .opd section.
2004 if (
auto Err = findOPDEntrySection(Obj, ObjSectionToID,
Value))
2005 return std::move(Err);
2007 // In the ELFv2 ABI, a function symbol may provide a local entry
2008 // point, which must be used for direct calls.
2009 if (
Value.SectionID == SectionID){
2010 uint8_t SymOther = Symbol->getOther();
2016 int64_t delta =
static_cast<int64_t
>(
Target - RelocTarget);
2017 // If it is within 26-bits branch range, just set the branch target
2019 RangeOverflow =
true;
2020 }
else if ((AbiVariant != 2) ||
2021 (AbiVariant == 2 &&
Value.SectionID == SectionID)) {
2026 if (IsExtern || (AbiVariant == 2 &&
Value.SectionID != SectionID) ||
2028 // It is an external symbol (either Value.SymbolName is set, or
2029 // SymType is SymbolRef::ST_Unknown) or out of range.
2030 auto [It, Inserted] = Stubs.try_emplace(
Value);
2032 // Symbol function stub already created, just relocate to it
2033 resolveRelocation(Section,
Offset,
2034 Section.getLoadAddressWithOffset(It->second),
2038 // Create a new stub function.
2040 It->second = Section.getStubOffset();
2042 Section.getAddressWithOffset(Section.getStubOffset()),
2045 ELF::R_PPC64_ADDR64,
Value.Addend);
2047 // Generates the 64-bits address loads as exemplified in section
2048 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
2049 // apply to the low part of the instructions, so we have to update
2050 // the offset according to the target endianness.
2051 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
2053 StubRelocOffset += 2;
2056 ELF::R_PPC64_ADDR16_HIGHEST,
Value.Addend);
2058 ELF::R_PPC64_ADDR16_HIGHER,
Value.Addend);
2060 ELF::R_PPC64_ADDR16_HI,
Value.Addend);
2062 ELF::R_PPC64_ADDR16_LO,
Value.Addend);
2064 if (
Value.SymbolName) {
2078 Section.getLoadAddressWithOffset(Section.getStubOffset()),
2082 if (IsExtern || (AbiVariant == 2 &&
Value.SectionID != SectionID)) {
2083 // Restore the TOC for external calls
2084 if (AbiVariant == 2)
2090 }
else if (RelType == ELF::R_PPC64_TOC16 ||
2091 RelType == ELF::R_PPC64_TOC16_DS ||
2092 RelType == ELF::R_PPC64_TOC16_LO ||
2093 RelType == ELF::R_PPC64_TOC16_LO_DS ||
2094 RelType == ELF::R_PPC64_TOC16_HI ||
2095 RelType == ELF::R_PPC64_TOC16_HA) {
2096 // These relocations are supposed to subtract the TOC address from
2097 // the final value. This does not fit cleanly into the RuntimeDyld
2098 // scheme, since there may be *two* sections involved in determining
2099 // the relocation value (the section of the symbol referred to by the
2100 // relocation, and the TOC section associated with the current module).
2102 // Fortunately, these relocations are currently only ever generated
2103 // referring to symbols that themselves reside in the TOC, which means
2104 // that the two sections are actually the same. Thus they cancel out
2105 // and we can immediately resolve the relocation right now.
2107 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16;
break;
2108 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS;
break;
2109 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO;
break;
2110 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS;
break;
2111 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI;
break;
2112 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA;
break;
2117 if (
auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
2118 return std::move(Err);
2124 // There are two ways to refer to the TOC address directly: either
2125 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
2126 // ignored), or via any relocation that refers to the magic ".TOC."
2127 // symbols (in which case the addend is respected).
2128 if (RelType == ELF::R_PPC64_TOC) {
2129 RelType = ELF::R_PPC64_ADDR64;
2130 if (
auto Err = findPPC64TOCSection(Obj, ObjSectionToID,
Value))
2131 return std::move(Err);
2132 }
else if (TargetName ==
".TOC.") {
2133 if (
auto Err = findPPC64TOCSection(Obj, ObjSectionToID,
Value))
2134 return std::move(Err);
2135 Value.Addend += Addend;
2140 if (
Value.SymbolName)
2146 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
2147 // Create function stubs for both PLT and GOT references, regardless of
2148 // whether the GOT reference is to data or code. The stub contains the
2149 // full address of the symbol, as needed by GOT references, and the
2150 // executable part only adds an overhead of 8 bytes.
2152 // We could try to conserve space by allocating the code and data
2153 // parts of the stub separately. However, as things stand, we allocate
2154 // a stub for every relocation, so using a GOT in JIT code should be
2155 // no less space efficient than using an explicit constant pool.
2156 LLVM_DEBUG(
dbgs() <<
"\t\tThis is a SystemZ indirect relocation.");
2159 // Look for an existing stub.
2160 StubMap::const_iterator i = Stubs.find(
Value);
2161 uintptr_t StubAddress;
2162 if (i != Stubs.end()) {
2163 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
2166 // Create a new stub function.
2169 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
2171 alignTo(BaseAddress + Section.getStubOffset(), getStubAlignment());
2172 unsigned StubOffset = StubAddress - BaseAddress;
2174 Stubs[
Value] = StubOffset;
2178 if (
Value.SymbolName)
2185 if (RelType == ELF::R_390_GOTENT)
2186 resolveRelocation(Section,
Offset, StubAddress + 8, ELF::R_390_PC32DBL,
2189 resolveRelocation(Section,
Offset, StubAddress, RelType, Addend);
2191 if (RelType == ELF::R_X86_64_PLT32) {
2192 // The way the PLT relocations normally work is that the linker allocates
2194 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
2195 // entry will then jump to an address provided by the GOT. On first call,
2197 // GOT address will point back into PLT code that resolves the symbol. After
2198 // the first call, the GOT entry points to the actual function.
2200 // For local functions we're ignoring all of that here and just replacing
2201 // the PLT32 relocation type with PC32, which will translate the relocation
2202 // into a PC-relative call directly to the function. For external symbols we
2203 // can't be sure the function will be within 2^32 bytes of the call site, so
2204 // we need to create a stub, which calls into the GOT. This case is
2205 // equivalent to the usual PLT implementation except that we use the stub
2206 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
2207 // rather than allocating a PLT section.
2208 if (
Value.SymbolName &&
MemMgr.allowStubAllocation()) {
2209 // This is a call to an external function.
2210 // Look for an existing stub.
2212 auto [It, Inserted] = Stubs.try_emplace(
Value);
2213 uintptr_t StubAddress;
2215 StubAddress = uintptr_t(Section->getAddress()) + It->second;
2218 // Create a new stub function (equivalent to a PLT entry).
2221 uintptr_t BaseAddress = uintptr_t(Section->getAddress());
2222 StubAddress =
alignTo(BaseAddress + Section->getStubOffset(),
2223 getStubAlignment());
2224 unsigned StubOffset = StubAddress - BaseAddress;
2225 It->second = StubOffset;
2228 // Bump our stub offset counter
2231 // Allocate a GOT Entry
2232 uint64_t GOTOffset = allocateGOTEntries(1);
2233 // This potentially creates a new Section which potentially
2234 // invalidates the Section pointer, so reload it.
2237 // The load of the GOT address has an addend of -4
2238 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
2239 ELF::R_X86_64_PC32);
2241 // Fill in the value of the symbol we're targeting into the GOT
2243 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
2247 // Make the target call a call into the stub table.
2248 resolveRelocation(*Section,
Offset, StubAddress, ELF::R_X86_64_PC32,
2251 Value.Addend += support::ulittle32_t::ref(
2252 computePlaceholderAddress(SectionID,
Offset));
2253 processSimpleRelocation(SectionID,
Offset, ELF::R_X86_64_PC32,
Value);
2255 }
else if (RelType == ELF::R_X86_64_GOTPCREL ||
2256 RelType == ELF::R_X86_64_GOTPCRELX ||
2257 RelType == ELF::R_X86_64_REX_GOTPCRELX) {
2258 uint64_t GOTOffset = allocateGOTEntries(1);
2259 resolveGOTOffsetRelocation(SectionID,
Offset, GOTOffset + Addend,
2260 ELF::R_X86_64_PC32);
2262 // Fill in the value of the symbol we're targeting into the GOT
2264 computeGOTOffsetRE(GOTOffset,
Value.Offset, ELF::R_X86_64_64);
2265 if (
Value.SymbolName)
2269 }
else if (RelType == ELF::R_X86_64_GOT64) {
2270 // Fill in a 64-bit GOT offset.
2271 uint64_t GOTOffset = allocateGOTEntries(1);
2273 ELF::R_X86_64_64, 0);
2275 // Fill in the value of the symbol we're targeting into the GOT
2277 computeGOTOffsetRE(GOTOffset,
Value.Offset, ELF::R_X86_64_64);
2278 if (
Value.SymbolName)
2282 }
else if (RelType == ELF::R_X86_64_GOTPC32) {
2283 // Materialize the address of the base of the GOT relative to the PC.
2284 // This doesn't create a GOT entry, but it does mean we need a GOT
2286 (void)allocateGOTEntries(0);
2287 resolveGOTOffsetRelocation(SectionID,
Offset, Addend, ELF::R_X86_64_PC32);
2288 }
else if (RelType == ELF::R_X86_64_GOTPC64) {
2289 (void)allocateGOTEntries(0);
2290 resolveGOTOffsetRelocation(SectionID,
Offset, Addend, ELF::R_X86_64_PC64);
2291 }
else if (RelType == ELF::R_X86_64_GOTOFF64) {
2292 // GOTOFF relocations ultimately require a section difference relocation.
2293 (void)allocateGOTEntries(0);
2294 processSimpleRelocation(SectionID,
Offset, RelType,
Value);
2295 }
else if (RelType == ELF::R_X86_64_PC32) {
2296 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID,
Offset));
2297 processSimpleRelocation(SectionID,
Offset, RelType,
Value);
2298 }
else if (RelType == ELF::R_X86_64_PC64) {
2299 Value.Addend += support::ulittle64_t::ref(
2300 computePlaceholderAddress(SectionID,
Offset));
2301 processSimpleRelocation(SectionID,
Offset, RelType,
Value);
2302 }
else if (RelType == ELF::R_X86_64_GOTTPOFF) {
2303 processX86_64GOTTPOFFRelocation(SectionID,
Offset,
Value, Addend);
2304 }
else if (RelType == ELF::R_X86_64_TLSGD ||
2305 RelType == ELF::R_X86_64_TLSLD) {
2306 // The next relocation must be the relocation for __tls_get_addr.
2308 auto &GetAddrRelocation = *RelI;
2309 processX86_64TLSRelocation(SectionID,
Offset, RelType,
Value, Addend,
2312 processSimpleRelocation(SectionID,
Offset, RelType,
Value);
2315 // *_LO12 relocation receive information about a symbol from the
2316 // corresponding *_HI20 relocation, so we have to collect this information
2318 if (RelType == ELF::R_RISCV_GOT_HI20 ||
2319 RelType == ELF::R_RISCV_PCREL_HI20 ||
2320 RelType == ELF::R_RISCV_TPREL_HI20 ||
2321 RelType == ELF::R_RISCV_TLS_GD_HI20 ||
2322 RelType == ELF::R_RISCV_TLS_GOT_HI20) {
2324 PendingRelocs.push_back({
Value, RE});
2326 processSimpleRelocation(SectionID,
Offset, RelType,
Value);
2329 Value.Addend += support::ulittle32_t::ref(
2330 computePlaceholderAddress(SectionID,
Offset));
2332 processSimpleRelocation(SectionID,
Offset, RelType,
Value);
2337void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(
unsigned SectionID,
2341 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2342 // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
2343 // only mentions one optimization even though there are two different
2344 // code sequences for the Initial Exec TLS Model. We match the code to
2345 // find out which one was used.
2347 // A possible TLS code sequence and its replacement
2348 struct CodeSequence {
2349 // The expected code sequence
2351 // The negative offset of the GOTTPOFF relocation to the beginning of
2354 // The new code sequence
2356 // The offset of the new TPOFF relocation
2360 std::array<CodeSequence, 2> CodeSequences;
2362 // Initial Exec Code Model Sequence
2364 static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
2365 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2366 0x00,
// mov %fs:0, %rax
2367 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00
// add x@gotpoff(%rip),
2370 CodeSequences[0].ExpectedCodeSequence =
2371 ArrayRef<uint8_t>(ExpectedCodeSequenceList);
2372 CodeSequences[0].TLSSequenceOffset = 12;
2374 static const std::initializer_list<uint8_t> NewCodeSequenceList = {
2375 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00,
// mov %fs:0, %rax
2376 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00
// lea x@tpoff(%rax), %rax
2378 CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
2379 CodeSequences[0].TpoffRelocationOffset = 12;
2382 // Initial Exec Code Model Sequence, II
2384 static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
2385 0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00,
// mov x@gotpoff(%rip), %rax
2386 0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00
// mov %fs:(%rax), %rax
2388 CodeSequences[1].ExpectedCodeSequence =
2389 ArrayRef<uint8_t>(ExpectedCodeSequenceList);
2390 CodeSequences[1].TLSSequenceOffset = 3;
2392 static const std::initializer_list<uint8_t> NewCodeSequenceList = {
2393 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00,
// 6 byte nop
2394 0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00,
// mov %fs:x@tpoff, %rax
2396 CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
2397 CodeSequences[1].TpoffRelocationOffset = 10;
2402 for (
const auto &
C : CodeSequences) {
2403 assert(
C.ExpectedCodeSequence.size() ==
C.NewCodeSequence.size() &&
2404 "Old and new code sequences must have the same size");
2406 if (
Offset <
C.TLSSequenceOffset ||
2407 (
Offset -
C.TLSSequenceOffset +
C.NewCodeSequence.size()) >
2409 // This can't be a matching sequence as it doesn't fit in the current
2414 auto TLSSequenceStartOffset =
Offset -
C.TLSSequenceOffset;
2415 auto *TLSSequence =
Section.getAddressWithOffset(TLSSequenceStartOffset);
2416 if (ArrayRef<uint8_t>(TLSSequence,
C.ExpectedCodeSequence.size()) !=
2417 C.ExpectedCodeSequence) {
2421 memcpy(TLSSequence,
C.NewCodeSequence.data(),
C.NewCodeSequence.size());
2423 // The original GOTTPOFF relocation has an addend as it is PC relative,
2424 // so it needs to be corrected. The TPOFF32 relocation is used as an
2425 // absolute value (which is an offset from %fs:0), so remove the addend
2427 RelocationEntry RE(SectionID,
2428 TLSSequenceStartOffset +
C.TpoffRelocationOffset,
2429 ELF::R_X86_64_TPOFF32,
Value.Addend - Addend);
2431 if (
Value.SymbolName)
2441 // The GOTTPOFF relocation was not used in one of the sequences
2442 // described in the spec, so we can't optimize it to a TPOFF
2444 uint64_t GOTOffset = allocateGOTEntries(1);
2445 resolveGOTOffsetRelocation(SectionID,
Offset, GOTOffset + Addend,
2446 ELF::R_X86_64_PC32);
2447 RelocationEntry RE =
2448 computeGOTOffsetRE(GOTOffset,
Value.Offset, ELF::R_X86_64_TPOFF64);
2449 if (
Value.SymbolName)
2456void RuntimeDyldELF::processX86_64TLSRelocation(
2457 unsigned SectionID, uint64_t
Offset, uint64_t RelType,
2459 const RelocationRef &GetAddrRelocation) {
2460 // Since we are statically linking and have no additional DSOs, we can resolve
2461 // the relocation directly without using __tls_get_addr.
2462 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2463 // to replace it with the Local Exec relocation variant.
2465 // Find out whether the code was compiled with the large or small memory
2466 // model. For this we look at the next relocation which is the relocation
2467 // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2468 // small code model, with a 64 bit relocation it's the large code model.
2469 bool IsSmallCodeModel;
2470 // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2471 bool IsGOTPCRel =
false;
2473 switch (GetAddrRelocation.
getType()) {
2474 case ELF::R_X86_64_GOTPCREL:
2475 case ELF::R_X86_64_REX_GOTPCRELX:
2476 case ELF::R_X86_64_GOTPCRELX:
2479 case ELF::R_X86_64_PLT32:
2480 IsSmallCodeModel =
true;
2482 case ELF::R_X86_64_PLTOFF64:
2483 IsSmallCodeModel =
false;
2487 "invalid TLS relocations for General/Local Dynamic TLS Model: "
2488 "expected PLT or GOT relocation for __tls_get_addr function");
2491 // The negative offset to the start of the TLS code sequence relative to
2492 // the offset of the TLSGD/TLSLD relocation
2493 uint64_t TLSSequenceOffset;
2494 // The expected start of the code sequence
2495 ArrayRef<uint8_t> ExpectedCodeSequence;
2496 // The new TLS code sequence that will replace the existing code
2497 ArrayRef<uint8_t> NewCodeSequence;
2499 if (RelType == ELF::R_X86_64_TLSGD) {
2500 // The offset of the new TPOFF32 relocation (offset starting from the
2501 // beginning of the whole TLS sequence)
2502 uint64_t TpoffRelocOffset;
2504 if (IsSmallCodeModel) {
2506 static const std::initializer_list<uint8_t> CodeSequence = {
2507 0x66,
// data16 (no-op prefix)
2508 0x48, 0x8d, 0x3d, 0x00, 0x00,
2509 0x00, 0x00,
// lea <disp32>(%rip), %rdi
2510 0x66, 0x66,
// two data16 prefixes
2511 0x48,
// rex64 (no-op prefix)
2512 0xe8, 0x00, 0x00, 0x00, 0x00
// call __tls_get_addr@plt
2514 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2515 TLSSequenceOffset = 4;
2517 // This code sequence is not described in the TLS spec but gcc
2518 // generates it sometimes.
2519 static const std::initializer_list<uint8_t> CodeSequence = {
2520 0x66,
// data16 (no-op prefix)
2521 0x48, 0x8d, 0x3d, 0x00, 0x00,
2522 0x00, 0x00,
// lea <disp32>(%rip), %rdi
2523 0x66,
// data16 prefix (no-op prefix)
2524 0x48,
// rex64 (no-op prefix)
2525 0xff, 0x15, 0x00, 0x00, 0x00,
2526 0x00
// call *__tls_get_addr@gotpcrel(%rip)
2528 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2529 TLSSequenceOffset = 4;
2532 // The replacement code for the small code model. It's the same for
2534 static const std::initializer_list<uint8_t> SmallSequence = {
2535 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2536 0x00,
// mov %fs:0, %rax
2537 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00
// lea x@tpoff(%rax),
2540 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2541 TpoffRelocOffset = 12;
2543 static const std::initializer_list<uint8_t> CodeSequence = {
2544 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00,
// lea <disp32>(%rip),
2546 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2547 0x00,
// movabs $__tls_get_addr@pltoff, %rax
2548 0x48, 0x01, 0xd8,
// add %rbx, %rax
2549 0xff, 0xd0
// call *%rax
2551 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2552 TLSSequenceOffset = 3;
2554 // The replacement code for the large code model
2555 static const std::initializer_list<uint8_t> LargeSequence = {
2556 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2557 0x00,
// mov %fs:0, %rax
2558 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00,
// lea x@tpoff(%rax),
2560 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00
// nopw 0x0(%rax,%rax,1)
2562 NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2563 TpoffRelocOffset = 12;
2566 // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2567 // The new TPOFF32 relocations is used as an absolute offset from
2568 // %fs:0, so remove the TLSGD/TLSLD addend again.
2569 RelocationEntry RE(SectionID,
Offset - TLSSequenceOffset + TpoffRelocOffset,
2570 ELF::R_X86_64_TPOFF32,
Value.Addend - Addend);
2571 if (
Value.SymbolName)
2575 }
else if (RelType == ELF::R_X86_64_TLSLD) {
2576 if (IsSmallCodeModel) {
2578 static const std::initializer_list<uint8_t> CodeSequence = {
2579 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00,
// leaq <disp32>(%rip), %rdi
2580 0x00, 0xe8, 0x00, 0x00, 0x00, 0x00
// call __tls_get_addr@plt
2582 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2583 TLSSequenceOffset = 3;
2585 // The replacement code for the small code model
2586 static const std::initializer_list<uint8_t> SmallSequence = {
2587 0x66, 0x66, 0x66,
// three data16 prefixes (no-op)
2588 0x64, 0x48, 0x8b, 0x04, 0x25,
2589 0x00, 0x00, 0x00, 0x00
// mov %fs:0, %rax
2591 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2593 // This code sequence is not described in the TLS spec but gcc
2594 // generates it sometimes.
2595 static const std::initializer_list<uint8_t> CodeSequence = {
2596 0x48, 0x8d, 0x3d, 0x00,
2597 0x00, 0x00, 0x00,
// leaq <disp32>(%rip), %rdi
2598 0xff, 0x15, 0x00, 0x00,
2600 // *__tls_get_addr@gotpcrel(%rip)
2602 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2603 TLSSequenceOffset = 3;
2605 // The replacement is code is just like above but it needs to be
2607 static const std::initializer_list<uint8_t> SmallSequence = {
2608 0x0f, 0x1f, 0x40, 0x00,
// 4 byte nop
2609 0x64, 0x48, 0x8b, 0x04, 0x25,
2610 0x00, 0x00, 0x00, 0x00
// mov %fs:0, %rax
2612 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2615 // This is the same sequence as for the TLSGD sequence with the large
2616 // memory model above
2617 static const std::initializer_list<uint8_t> CodeSequence = {
2618 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00,
// lea <disp32>(%rip),
2620 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2621 0x48,
// movabs $__tls_get_addr@pltoff, %rax
2622 0x01, 0xd8,
// add %rbx, %rax
2623 0xff, 0xd0
// call *%rax
2625 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2626 TLSSequenceOffset = 3;
2628 // The replacement code for the large code model
2629 static const std::initializer_list<uint8_t> LargeSequence = {
2630 0x66, 0x66, 0x66,
// three data16 prefixes (no-op)
2631 0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2632 0x00,
// 10 byte nop
2633 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00
// mov %fs:0,%rax
2635 NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2642 "Old and new code sequences must have the same size");
2645 if (
Offset < TLSSequenceOffset ||
2646 (
Offset - TLSSequenceOffset + NewCodeSequence.
size()) >
2651 auto *TLSSequence =
Section.getAddressWithOffset(
Offset - TLSSequenceOffset);
2652 if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.
size()) !=
2653 ExpectedCodeSequence) {
2655 "invalid TLS sequence for Global/Local Dynamic TLS Model");
2658 memcpy(TLSSequence, NewCodeSequence.
data(), NewCodeSequence.
size());
2662 // We don't use the GOT in all of these cases, but it's essentially free
2663 // to put them all here.
2697uint64_t RuntimeDyldELF::allocateGOTEntries(
unsigned no) {
2698 if (GOTSectionID == 0) {
2700 // Reserve a section id. We'll allocate the section later
2701 // once we know the total size
2705 CurrentGOTIndex += no;
2710 unsigned GOTRelType) {
2711 auto E = GOTOffsetMap.insert({
Value, 0});
2713 uint64_t GOTOffset = allocateGOTEntries(1);
2715 // Create relocation for newly created GOT entry
2716 RelocationEntry RE =
2717 computeGOTOffsetRE(GOTOffset,
Value.Offset, GOTRelType);
2718 if (
Value.SymbolName)
2723 E.first->second = GOTOffset;
2726 return E.first->second;
2729void RuntimeDyldELF::resolveGOTOffsetRelocation(
unsigned SectionID,
2733 // Fill in the relative address of the GOT Entry into the stub
2734 RelocationEntry GOTRE(SectionID,
Offset,
Type, GOTOffset);
2739 uint64_t SymbolOffset,
2741 return RelocationEntry(GOTSectionID, GOTOffset,
Type, SymbolOffset);
2744void RuntimeDyldELF::processNewSymbol(
const SymbolRef &ObjSymbol,
SymbolTableEntry& Symbol) {
2745 // This should never return an error as `processNewSymbol` wouldn't have been
2746 // called if getFlags() returned an error before.
2749 if (ObjSymbolFlags & SymbolRef::SF_Indirect) {
2750 if (IFuncStubSectionID == 0) {
2751 // Create a dummy section for the ifunc stubs. It will be actually
2752 // allocated in finalizeLoad() below.
2753 IFuncStubSectionID =
Sections.size();
2755 SectionEntry(
".text.__llvm_IFuncStubs",
nullptr, 0, 0, 0));
2756 // First 64B are reserverd for the IFunc resolver
2757 IFuncStubOffset = 64;
2760 IFuncStubs.push_back(IFuncStub{IFuncStubOffset,
Symbol});
2761 // Modify the symbol so that it points to the ifunc stub instead of to the
2762 // resolver function.
2763 Symbol = SymbolTableEntry(IFuncStubSectionID, IFuncStubOffset,
2765 IFuncStubOffset += getMaxIFuncStubSize();
2772 if (!PendingRelocs.empty())
2775 // Create the IFunc stubs if necessary. This must be done before processing
2776 // the GOT entries, as the IFunc stubs may create some.
2777 if (IFuncStubSectionID != 0) {
2779 IFuncStubOffset, 1, IFuncStubSectionID,
".text.__llvm_IFuncStubs");
2780 if (!IFuncStubsAddr)
2782 "Unable to allocate memory for IFunc stubs!");
2784 SectionEntry(
".text.__llvm_IFuncStubs", IFuncStubsAddr, IFuncStubOffset,
2785 IFuncStubOffset, 0);
2787 createIFuncResolver(IFuncStubsAddr);
2790 << IFuncStubSectionID <<
" Addr: "
2791 <<
Sections[IFuncStubSectionID].getAddress() <<
'\n');
2792 for (
auto &IFuncStub : IFuncStubs) {
2793 auto &Symbol = IFuncStub.OriginalSymbol;
2795 <<
" Offset: " <<
format(
"%p", Symbol.getOffset())
2796 <<
" IFuncStubOffset: "
2797 <<
format(
"%p\n", IFuncStub.StubOffset));
2798 createIFuncStub(IFuncStubSectionID, 0, IFuncStub.StubOffset,
2799 Symbol.getSectionID(), Symbol.getOffset());
2802 IFuncStubSectionID = 0;
2803 IFuncStubOffset = 0;
2807 // If necessary, allocate the global offset table
2808 if (GOTSectionID != 0) {
2809 // Allocate memory for the section
2812 GOTSectionID,
".got",
false);
2819 // For now, initialize all GOT entries to zero. We'll fill them in as
2820 // needed when GOT-based relocations are applied.
2821 memset(Addr, 0, TotalSize);
2823 // To correctly resolve Mips GOT relocations, we need a mapping from
2824 // object's sections to GOTs.
2827 if (!
SI->relocations().empty()) {
2834 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
2835 assert(i != SectionMap.end());
2839 GOTSymbolOffsets.clear();
2843 // Look for and record the EH frame section.
2844 ObjSectionToIDMap::iterator i, e;
2845 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
2855 if (Name ==
".eh_frame") {
2856 UnregisteredEHFrameSections.push_back(i->second);
2861 GOTOffsetMap.clear();
2863 CurrentGOTIndex = 0;
2872void RuntimeDyldELF::createIFuncResolver(
uint8_t *Addr)
const {
2874 // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8
2875 // (see createIFuncStub() for details)
2876 // The following code first saves all registers that contain the original
2877 // function arguments as those registers are not saved by the resolver
2878 // function. %r11 is saved as well so that the GOT2 entry can be updated
2879 // afterwards. Then it calls the actual IFunc resolver function whose
2880 // address is stored in GOT2. After the resolver function returns, all
2881 // saved registers are restored and the return value is written to GOT1.
2882 // Finally, jump to the now resolved function.
2889 0x41, 0x50,
// push %r8
2890 0x41, 0x51,
// push %r9
2891 0x41, 0x53,
// push %r11
2892 0x41, 0xff, 0x53, 0x08,
// call *0x8(%r11)
2893 0x41, 0x5b,
// pop %r11
2894 0x41, 0x59,
// pop %r9
2895 0x41, 0x58,
// pop %r8
2900 0x49, 0x89, 0x03,
// mov %rax,(%r11)
2901 0xff, 0xe0
// jmp *%rax
2904 static_assert(
sizeof(StubCode) <= 64,
2905 "maximum size of the IFunc resolver is 64B");
2906 memcpy(Addr, StubCode,
sizeof(StubCode));
2909 "IFunc resolver is not supported for target architecture");
2913void RuntimeDyldELF::createIFuncStub(
unsigned IFuncStubSectionID,
2914 uint64_t IFuncResolverOffset,
2915 uint64_t IFuncStubOffset,
2916 unsigned IFuncSectionID,
2917 uint64_t IFuncOffset) {
2918 auto &IFuncStubSection =
Sections[IFuncStubSectionID];
2919 auto *Addr = IFuncStubSection.getAddressWithOffset(IFuncStubOffset);
2922 // The first instruction loads a PC-relative address into %r11 which is a
2923 // GOT entry for this stub. This initially contains the address to the
2924 // IFunc resolver. We can use %r11 here as it's caller saved but not used
2925 // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for
2926 // code in the PLT. The IFunc resolver will use %r11 to update the GOT
2929 // The next instruction just jumps to the address contained in the GOT
2930 // entry. As mentioned above, we do this two-step jump by first setting
2931 // %r11 so that the IFunc resolver has access to it.
2933 // The IFunc resolver of course also needs to know the actual address of
2934 // the actual IFunc resolver function. This will be stored in a GOT entry
2935 // right next to the first one for this stub. So, the IFunc resolver will
2936 // be able to call it with %r11+8.
2938 // In total, two adjacent GOT entries (+relocation) and one additional
2939 // relocation are required:
2940 // GOT1: Address of the IFunc resolver.
2941 // GOT2: Address of the IFunc resolver function.
2942 // IFuncStubOffset+3: 32-bit PC-relative address of GOT1.
2943 uint64_t GOT1 = allocateGOTEntries(2);
2946 RelocationEntry RE1(GOTSectionID, GOT1, ELF::R_X86_64_64,
2947 IFuncResolverOffset, {});
2949 RelocationEntry RE2(GOTSectionID, GOT2, ELF::R_X86_64_64, IFuncOffset, {});
2952 const uint8_t StubCode[] = {
2953 0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00,
// leaq 0x0(%rip),%r11
2954 0x41, 0xff, 0x23
// jmpq *(%r11)
2956 assert(
sizeof(StubCode) <= getMaxIFuncStubSize() &&
2957 "IFunc stub size must not exceed getMaxIFuncStubSize()");
2958 memcpy(Addr, StubCode,
sizeof(StubCode));
2960 // The PC-relative value starts 4 bytes from the end of the leaq
2961 // instruction, so the addend is -4.
2962 resolveGOTOffsetRelocation(IFuncStubSectionID, IFuncStubOffset + 3,
2963 GOT1 - 4, ELF::R_X86_64_PC32);
2969unsigned RuntimeDyldELF::getMaxIFuncStubSize()
const {
2976bool RuntimeDyldELF::relocationNeedsGot(
const RelocationRef &R)
const {
2977 unsigned RelTy =
R.getType();
2979 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
2980 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
2983 return RelTy == ELF::R_LARCH_GOT_PC_HI20 ||
2984 RelTy == ELF::R_LARCH_GOT_PC_LO12 ||
2985 RelTy == ELF::R_LARCH_GOT64_PC_HI12 ||
2986 RelTy == ELF::R_LARCH_GOT64_PC_LO20;
2989 return RelTy == ELF::R_X86_64_GOTPCREL ||
2990 RelTy == ELF::R_X86_64_GOTPCRELX ||
2991 RelTy == ELF::R_X86_64_GOT64 ||
2992 RelTy == ELF::R_X86_64_REX_GOTPCRELX;
2996bool RuntimeDyldELF::relocationNeedsStub(
const RelocationRef &R)
const {
2998 return true;
// Conservative answer
3000 switch (
R.getType()) {
3002 return true;
// Conservative answer
3005 case ELF::R_X86_64_GOTPCREL:
3006 case ELF::R_X86_64_GOTPCRELX:
3007 case ELF::R_X86_64_REX_GOTPCRELX:
3008 case ELF::R_X86_64_GOTPC64:
3009 case ELF::R_X86_64_GOT64:
3010 case ELF::R_X86_64_GOTOFF64:
3011 case ELF::R_X86_64_PC32:
3012 case ELF::R_X86_64_PC64:
3013 case ELF::R_X86_64_64:
3014 // We know that these reloation types won't need a stub function. This list
3015 // can be extended as needed.
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
amdgpu aa AMDGPU Address space based Alias Analysis Wrapper
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
static void or32le(void *P, int32_t V)
static void or32AArch64Imm(void *L, uint64_t Imm)
static uint64_t getBits(uint64_t Val, int Start, int End)
static void write32AArch64Addr(void *L, uint64_t Imm)
Expected< const Elf_Sym * > getSymbol(DataRefImpl Sym) const
static Expected< ELFObjectFile< ELFT > > create(MemoryBufferRef Object, bool InitContent=true)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
Lightweight error class with error context and mandatory checking.
static ErrorSuccess success()
Create a success value.
Tagged union holding either a T or a Error.
Error takeError()
Take ownership of the stored error.
Symbol resolution interface.
static std::unique_ptr< MemoryBuffer > getMemBufferCopy(StringRef InputData, const Twine &BufferName="")
Open the specified memory range as a MemoryBuffer, copying the contents and taking ownership of it.
RelocationEntry - used to represent relocations internally in the dynamic linker.
uint32_t RelType
RelType - relocation type.
uint64_t Offset
Offset - offset into the section.
int64_t Addend
Addend - the relocation addend encoded in the instruction itself.
unsigned SectionID
SectionID - the section this relocation points to.
void registerEHFrames() override
size_t getGOTEntrySize() override
~RuntimeDyldELF() override
static std::unique_ptr< RuntimeDyldELF > create(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver)
Error finalizeLoad(const ObjectFile &Obj, ObjSectionToIDMap &SectionMap) override
DenseMap< SID, SID > SectionToGOTMap
bool isCompatibleFile(const object::ObjectFile &Obj) const override
std::unique_ptr< RuntimeDyld::LoadedObjectInfo > loadObject(const object::ObjectFile &O) override
RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver)
Expected< relocation_iterator > processRelocationRef(unsigned SectionID, relocation_iterator RelI, const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) override
Parses one or more object file relocations (some object files use relocation pairs) and stores it to ...
std::map< SectionRef, unsigned > ObjSectionToIDMap
void writeInt32BE(uint8_t *Addr, uint32_t Value)
RuntimeDyldImpl(RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver)
void writeInt64BE(uint8_t *Addr, uint64_t Value)
std::map< RelocationValueRef, uintptr_t > StubMap
void writeInt16BE(uint8_t *Addr, uint16_t Value)
void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName)
bool IsTargetLittleEndian
JITSymbolResolver & Resolver
RuntimeDyld::MemoryManager & MemMgr
void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID)
Expected< unsigned > findOrEmitSection(const ObjectFile &Obj, const SectionRef &Section, bool IsCode, ObjSectionToIDMap &LocalSections)
Find Section in LocalSections.
uint8_t * createStubFunction(uint8_t *Addr, unsigned AbiVariant=0)
Emits long jump instruction to Addr.
uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const
Endian-aware read Read the least significant Size bytes from Src.
uint64_t getSectionLoadAddress(unsigned SectionID) const
virtual unsigned getMaxStubSize() const =0
RTDyldSymbolTable GlobalSymbolTable
Expected< ObjSectionToIDMap > loadObjectImpl(const object::ObjectFile &Obj)
SectionEntry - represents a section emitted into memory by the dynamic linker.
StringMapIterBase< SymbolTableEntry, true > const_iterator
StringRef - Represent a constant reference to a string, i.e.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Symbol info for RuntimeDyld.
Target - Wrapper for Target specific information.
static LLVM_ABI StringRef getArchTypePrefix(ArchType Kind)
Get the "prefix" canonical name for the Kind architecture.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM Value Representation.
Expected< uint32_t > getFlags() const
Get symbol flags (bitwise OR of SymbolRef::Flags)
DataRefImpl getRawDataRefImpl() const
StringRef getData() const
bool isLittleEndian() const
StringRef getFileName() const
virtual unsigned getPlatformFlags() const =0
Returns platform-specific object flags, if any.
Expected< int64_t > getAddend() const
This class is the base class for all object file types.
virtual section_iterator section_end() const =0
virtual uint8_t getBytesInAddress() const =0
The number of bytes used to represent an address in this object file format.
section_iterator_range sections() const
virtual StringRef getFileFormatName() const =0
virtual section_iterator section_begin() const =0
uint64_t getOffset() const
symbol_iterator getSymbol() const
This is a value type class that represents a single section in the list of sections in the object fil...
DataRefImpl getRawDataRefImpl() const
bool isText() const
Whether this section contains instructions.
Expected< StringRef > getName() const
This is a value type class that represents a single symbol in the list of symbols in the object file.
Expected< section_iterator > getSection() const
Get section this symbol is defined in reference to.
virtual basic_symbol_iterator symbol_end() const =0
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
static int64_t decodePPC64LocalEntryOffset(unsigned Other)
content_iterator< SectionRef > section_iterator
content_iterator< RelocationRef > relocation_iterator
@ Resolved
Queried, materialization begun.
NodeAddr< InstrNode * > Instr
void write32le(void *P, uint32_t V)
uint32_t read32le(const void *P)
detail::packed_endian_specific_integral< int32_t, llvm::endianness::little, unaligned > little32_t
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner={})
Log all errors (if any) in E to OS.
FunctionAddr VTableAddr Value
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
static uint16_t applyPPChighera(uint64_t value)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
static uint16_t applyPPChi(uint64_t value)
void handleAllErrors(Error E, HandlerTs &&... Handlers)
Behaves the same as handleErrors, except that by contract all errors must be handled by the given han...
static void applyITypeImmRISCV(uint8_t *InstrAddr, uint32_t Imm)
static uint16_t applyPPChighesta(uint64_t value)
static uint16_t applyPPChighest(uint64_t value)
LLVM_ABI Error write(MCStreamer &Out, ArrayRef< std::string > Inputs, OnCuIndexOverflow OverflowOptValue)
static uint16_t applyPPCha(uint64_t value)
static void applyUTypeImmRISCV(uint8_t *InstrAddr, uint32_t Imm)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
static uint16_t applyPPClo(uint64_t value)
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Error make_error(ArgTs &&... Args)
Make a Error instance representing failure using the given error info type.
@ Ref
The access may reference the value stored in memory.
void cantFail(Error Err, const char *Msg=nullptr)
Report a fatal error if Err is a failure value.
static uint16_t applyPPChigher(uint64_t value)
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
static void or32le(void *P, int32_t V)
std::string toString(const APInt &I, unsigned Radix, bool Signed, bool formatAsCLiteral=false, bool UpperCase=true, bool InsertSeparators=false)
constexpr int32_t SignExtend32(uint32_t X)
Sign-extend the number in the bottom B bits of X to a 32-bit integer.
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
static uint32_t extractBits(uint64_t Val, uint32_t Hi, uint32_t Lo)
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
static uint64_t getLoongArchPageDelta(uint64_t dest, uint64_t pc, uint32_t type)
void consumeError(Error Err)
Consume a Error without doing anything.
static void write32AArch64Addr(void *T, uint64_t s, uint64_t p, int shift)
Implement std::hash so that hash_code can be used in STL containers.
SymInfo contains information about symbol: it's address and section index which is -1LL for absolute ...