1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7//===----------------------------------------------------------------------===//
9// This file contains some functions that are useful for math stuff.
11//===----------------------------------------------------------------------===//
13#ifndef LLVM_SUPPORT_MATHEXTRAS_H
14#define LLVM_SUPPORT_MATHEXTRAS_H
27/// Some template parameter helpers to optimize for bitwidth, for functions that
28/// take multiple arguments.
30// We can't verify signedness, since callers rely on implicit coercions to
32template <
typename T,
typename U>
34 std::enable_if_t<std::is_integral_v<T> && std::is_integral_v<U>>;
36// Use std::common_type_t to widen only up to the widest argument.
37template <
typename T,
typename U,
typename = enableif_
int<T, U>>
39 std::common_type_t<std::make_unsigned_t<T>, std::make_unsigned_t<U>>;
40template <
typename T,
typename U,
typename = enableif_
int<T, U>>
42 std::common_type_t<std::make_signed_t<T>, std::make_signed_t<U>>;
44/// Mathematical constants.
62// sqrtpi is not in C++20 std::numbers.
63template <
typename T,
typename = std::enable_if_t<std::is_
floating_po
int_v<T>>>
64 inline constexpr T sqrtpi_v =
T(0x1.c5bf891b4ef6bP+0);
// (1.7724538509055160273) https://oeis.org/A002161
68// These string literals are taken from below:
69// https://github.com/bminor/glibc/blob/8543577b04ded6d979ffcc5a818930e4d74d0645/math/math.h#L1215-L1229
70 constexpr const char *
pis =
"3.141592653589793238462643383279502884",
71 *
inv_pis =
"0.318309886183790671537767526745028724";
75/// Create a bitmask with the N right-most bits set to 1, and all other
76/// bits set to 0. Only unsigned types are allowed.
78 static_assert(std::is_unsigned_v<T>,
"Invalid type!");
79 const unsigned Bits = CHAR_BIT *
sizeof(
T);
80 assert(
N <= Bits &&
"Invalid bit index");
83 return T(-1) >> (Bits -
N);
86/// Create a bitmask with the N left-most bits set to 1, and all other
87/// bits set to 0. Only unsigned types are allowed.
92/// Create a bitmask with the N right-most bits set to 0, and all other
93/// bits set to 1. Only unsigned types are allowed.
98/// Create a bitmask with the N left-most bits set to 0, and all other
99/// bits set to 1. Only unsigned types are allowed.
104/// Macro compressed bit reversal table for 256 bits.
106/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
108#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
109#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
110#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
117/// Reverse the bits in \p Val.
119#if __has_builtin(__builtin_bitreverse8)
120 if constexpr (std::is_same_v<T, uint8_t>)
121 return __builtin_bitreverse8(Val);
123#if __has_builtin(__builtin_bitreverse16)
124 if constexpr (std::is_same_v<T, uint16_t>)
125 return __builtin_bitreverse16(Val);
127#if __has_builtin(__builtin_bitreverse32)
128 if constexpr (std::is_same_v<T, uint32_t>)
129 return __builtin_bitreverse32(Val);
131#if __has_builtin(__builtin_bitreverse64)
132 if constexpr (std::is_same_v<T, uint64_t>)
133 return __builtin_bitreverse64(Val);
136 unsigned char in[
sizeof(Val)];
137 unsigned char out[
sizeof(Val)];
138 std::memcpy(in, &Val,
sizeof(Val));
139 for (
unsigned i = 0; i <
sizeof(Val); ++i)
141 std::memcpy(&Val, out,
sizeof(Val));
145// NOTE: The following support functions use the _32/_64 extensions instead of
146// type overloading so that signed and unsigned integers can be used without
149/// Return the high 32 bits of a 64 bit value.
154/// Return the low 32 bits of a 64 bit value.
159/// Make a 64-bit integer from a high / low pair of 32-bit integers.
164/// Checks if an integer fits into the given bit width.
165 template <
unsigned N>
constexpr bool isInt(int64_t x) {
166 if constexpr (
N == 0)
168 if constexpr (
N == 8)
169 return static_cast<int8_t
>(x) == x;
170 if constexpr (
N == 16)
171 return static_cast<int16_t
>(x) == x;
172 if constexpr (
N == 32)
173 return static_cast<int32_t
>(x) == x;
174 if constexpr (
N < 64)
175 return -(INT64_C(1) << (
N - 1)) <= x && x < (INT64_C(1) << (
N - 1));
176 (void)x;
// MSVC v19.25 warns that x is unused.
180/// Checks if a signed integer is an N bit number shifted left by S.
181template <
unsigned N,
unsigned S>
183 static_assert(S < 64,
"isShiftedInt<N, S> with S >= 64 is too much.");
184 static_assert(
N + S <= 64,
"isShiftedInt<N, S> with N + S > 64 is too wide.");
185 return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
188/// Checks if an unsigned integer fits into the given bit width.
190 if constexpr (
N < 64)
191 return (x >>
N) == 0;
192 (void)x;
// MSVC v19.25 warns that x is unused.
196/// Checks if a unsigned integer is an N bit number shifted left by S.
197template <
unsigned N,
unsigned S>
199 static_assert(S < 64,
"isShiftedUInt<N, S> with S >= 64 is too much.");
200 static_assert(
N + S <= 64,
201 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
202 // S must be strictly less than 64. So 1 << S is not undefined behavior.
206/// Gets the maximum value for a N-bit unsigned integer.
208 assert(
N <= 64 &&
"integer width out of range");
210 // uint64_t(1) << 64 is undefined behavior, so we can't do
211 // (uint64_t(1) << N) - 1
212 // without checking first that N != 64. But this works and doesn't have a
213 // branch for N != 0.
214 // Unfortunately, shifting a uint64_t right by 64 bit is undefined
215 // behavior, so the condition on N == 0 is necessary. Fortunately, most
216 // optimizers do not emit branches for this check.
222/// Gets the minimum value for a N-bit signed integer.
224 assert(
N <= 64 &&
"integer width out of range");
228 return UINT64_C(1) + ~(UINT64_C(1) << (
N - 1));
231/// Gets the maximum value for a N-bit signed integer.
233 assert(
N <= 64 &&
"integer width out of range");
235 // This relies on two's complement wraparound when N == 64, so we convert to
236 // int64_t only at the very end to avoid UB.
239 return (UINT64_C(1) << (
N - 1)) - 1;
242/// Checks if an unsigned integer fits into the given (dynamic) bit width.
247/// Checks if an signed integer fits into the given (dynamic) bit width.
248 inline constexpr bool isIntN(
unsigned N, int64_t x) {
252/// Return true if the argument is a non-empty sequence of ones starting at the
253/// least significant bit with the remainder zero (32 bit version).
254/// Ex. isMask_32(0x0000FFFFU) == true.
259/// Return true if the argument is a non-empty sequence of ones starting at the
260/// least significant bit with the remainder zero (64 bit version).
265/// Return true if the argument contains a non-empty sequence of ones with the
266/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
271/// Return true if the argument contains a non-empty sequence of ones with the
272/// remainder zero (64 bit version.)
277/// Return true if the argument is a power of two > 0.
278/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
283/// Return true if the argument is a power of two > 0 (64 bit edition.)
288/// Return true if the argument contains a non-empty sequence of ones with the
289/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
290/// If true, \p MaskIdx will specify the index of the lowest set bit and \p
291/// MaskLen is updated to specify the length of the mask, else neither are
302/// Return true if the argument contains a non-empty sequence of ones with the
303/// remainder zero (64 bit version.) If true, \p MaskIdx will specify the index
304/// of the lowest set bit and \p MaskLen is updated to specify the length of the
305/// mask, else neither are updated.
315/// Compile time Log2.
316/// Valid only for positive powers of two.
322template <
size_t kValue>
328/// Return the floor log base 2 of the specified value, -1 if the value is zero.
330/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
335/// Return the floor log base 2 of the specified value, -1 if the value is zero.
341/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
343/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
348/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
354/// A and B are either alignments or offsets. Return the minimum alignment that
355/// may be assumed after adding the two together.
356template <
typename U,
typename V,
typename T = common_u
int<U, V>>
358 // The largest power of 2 that divides both A and B.
360 // Replace "-Value" by "1+~Value" in the following commented code to avoid
361 // MSVC warning C4146
362 // return (A | B) & -(A | B);
363 return (
A |
B) & (1 + ~(
A |
B));
366/// Fallback when arguments aren't integral.
368 return (
A |
B) & (1 + ~(
A |
B));
371/// Returns the next power of two (in 64-bits) that is strictly greater than A.
372/// Returns zero on overflow.
383/// Returns the power of two which is greater than or equal to the given value.
384/// Essentially, it is a ceil operation across the domain of powers of two.
391/// Returns the integer ceil(Numerator / Denominator). Unsigned version.
392/// Guaranteed to never overflow.
393template <
typename U,
typename V,
typename T = common_u
int<U, V>>
395 assert(Denominator &&
"Division by zero");
396 T Bias = (Numerator != 0);
397 return (Numerator - Bias) / Denominator + Bias;
400/// Fallback when arguments aren't integral.
402 assert(Denominator &&
"Division by zero");
404 return (Numerator - Bias) / Denominator + Bias;
407// Check whether divideCeilSigned or divideFloorSigned would overflow. This
408// happens only when Numerator = INT_MIN and Denominator = -1.
409template <
typename U,
typename V>
411 return Numerator == std::numeric_limits<U>::min() && Denominator == -1;
414/// Returns the integer ceil(Numerator / Denominator). Signed version.
415/// Overflow is explicitly forbidden with an assert.
416template <
typename U,
typename V,
typename T = common_s
int<U, V>>
418 assert(Denominator &&
"Division by zero");
420 "Divide would overflow");
423 // C's integer division rounds towards 0.
424 T Bias = Denominator >= 0 ? 1 : -1;
425 bool SameSign = (Numerator >= 0) == (Denominator >= 0);
426 return SameSign ? (Numerator - Bias) / Denominator + 1
427 : Numerator / Denominator;
430/// Returns the integer floor(Numerator / Denominator). Signed version.
431/// Overflow is explicitly forbidden with an assert.
432template <
typename U,
typename V,
typename T = common_s
int<U, V>>
434 assert(Denominator &&
"Division by zero");
436 "Divide would overflow");
439 // C's integer division rounds towards 0.
440 T Bias = Denominator >= 0 ? -1 : 1;
441 bool SameSign = (Numerator >= 0) == (Denominator >= 0);
442 return SameSign ? Numerator / Denominator
443 : (Numerator - Bias) / Denominator - 1;
446/// Returns the remainder of the Euclidean division of LHS by RHS. Result is
447/// always non-negative.
448template <
typename U,
typename V,
typename T = common_s
int<U, V>>
449 constexpr T mod(U Numerator, V Denominator) {
450 assert(Denominator >= 1 &&
"Mod by non-positive number");
451 T Mod = Numerator % Denominator;
452 return Mod < 0 ?
Mod + Denominator :
Mod;
455/// Returns (Numerator / Denominator) rounded by round-half-up. Guaranteed to
457template <
typename U,
typename V,
typename T = common_u
int<U, V>>
459 assert(Denominator &&
"Division by zero");
460 T Mod = Numerator % Denominator;
461 return (Numerator / Denominator) +
462 (
Mod > (
static_cast<T >(Denominator) - 1) / 2);
465/// Returns the next integer (mod 2**nbits) that is greater than or equal to
466/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
471/// alignTo(17, 8) = 24
472/// alignTo(~0LL, 8) = 0
473/// alignTo(321, 255) = 510
476/// Will overflow only if result is not representable in T.
477template <
typename U,
typename V,
typename T = common_u
int<U, V>>
481 return CeilDiv *
Align;
484/// Fallback when arguments aren't integral.
488 return CeilDiv *
Align;
491/// Will overflow only if result is not representable in T.
492template <
typename U,
typename V,
typename T = common_u
int<U, V>>
495 "Align must be a power of 2");
496 T NegAlign =
static_cast<T >(0) -
Align;
500/// Fallback when arguments aren't integral.
503 "Align must be a power of 2");
508/// If non-zero \p Skew is specified, the return value will be a minimal integer
509/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
510/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
511/// Skew mod \p A'. \p Align must be non-zero.
515/// alignTo(5, 8, 7) = 7
516/// alignTo(17, 8, 1) = 17
517/// alignTo(~0LL, 8, 3) = 3
518/// alignTo(321, 255, 42) = 552
522template <
typename U,
typename V,
typename W,
530/// Returns the next integer (mod 2**nbits) that is greater than or equal to
531/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
533/// Will overflow only if result is not representable in T.
534template <auto Align,
typename V,
typename T = common_u
int<decltype(Align), V>>
536 static_assert(
Align != 0u,
"Align must be non-zero");
538 return CeilDiv *
Align;
541/// Returns the largest unsigned integer less than or equal to \p Value and is
542/// \p Skew mod \p Align. \p Align must be non-zero. Guaranteed to never
544template <
typename U,
typename V,
typename W =
uint8_t,
552/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
555 static_assert(
B <= 32,
"Bit width out of range.");
556 if constexpr (
B == 0)
558 return int32_t(
X << (32 -
B)) >> (32 -
B);
561/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
564 assert(
B <= 32 &&
"Bit width out of range.");
567 return int32_t(
X << (32 -
B)) >> (32 -
B);
570/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
573 static_assert(
B <= 64,
"Bit width out of range.");
574 if constexpr (
B == 0)
576 return int64_t(x << (64 -
B)) >> (64 -
B);
579/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
582 assert(
B <= 64 &&
"Bit width out of range.");
585 return int64_t(
X << (64 -
B)) >> (64 -
B);
588/// Return the absolute value of a signed integer, converted to the
589/// corresponding unsigned integer type. Avoids undefined behavior in std::abs
590/// when you pass it INT_MIN or similar.
591template <
typename T,
typename U = std::make_
unsigned_t<T>>
593 // If X is negative, cast it to the unsigned type _before_ negating it.
594 return X < 0 ? -
static_cast<U
>(
X) :
X;
597/// Subtract two unsigned integers, X and Y, of type T and return the absolute
598/// value of the result.
599template <
typename U,
typename V,
typename T = common_u
int<U, V>>
601 return X >
Y ? (
X -
Y) : (
Y -
X);
604/// Add two unsigned integers, X and Y, of type T. Clamp the result to the
605/// maximum representable value of T on overflow. ResultOverflowed indicates if
606/// the result is larger than the maximum representable value of type T.
608std::enable_if_t<std::is_unsigned_v<T>,
T>
611 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
612 // Hacker's Delight, p. 29
614 Overflowed = (Z <
X || Z <
Y);
616 return std::numeric_limits<T>::max();
621/// Add multiple unsigned integers of type T. Clamp the result to the
622/// maximum representable value of T on overflow.
623template <
class T,
class... Ts>
626 bool Overflowed =
false;
629 return SaturatingAdd(std::numeric_limits<T>::max(),
T(1), Args...);
633/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
634/// maximum representable value of T on overflow. ResultOverflowed indicates if
635/// the result is larger than the maximum representable value of type T.
637std::enable_if_t<std::is_unsigned_v<T>,
T>
640 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
642 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
643 // because it fails for uint16_t (where multiplication can have undefined
644 // behavior due to promotion to int), and requires a division in addition
645 // to the multiplication.
649 // Log2(Z) would be either Log2Z or Log2Z + 1.
650 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
651 // will necessarily be less than Log2Max as desired.
653 const T Max = std::numeric_limits<T>::max();
655 if (Log2Z < Log2Max) {
658 if (Log2Z > Log2Max) {
663 // We're going to use the top bit, and maybe overflow one
664 // bit past it. Multiply all but the bottom bit then add
665 // that on at the end.
667 if (Z & ~(Max >> 1)) {
678/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
679/// the product. Clamp the result to the maximum representable value of T on
680/// overflow. ResultOverflowed indicates if the result is larger than the
681/// maximum representable value of type T.
683std::enable_if_t<std::is_unsigned_v<T>,
T>
686 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
695/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
698/// Add two signed integers, computing the two's complement truncated result,
699/// returning true if overflow occurred.
702#if __has_builtin(__builtin_add_overflow)
703 return __builtin_add_overflow(
X,
Y, &Result);
705 // Perform the unsigned addition.
706 using U = std::make_unsigned_t<T>;
707 const U UX =
static_cast<U
>(
X);
708 const U UY =
static_cast<U
>(
Y);
709 const U UResult = UX + UY;
711 // Convert to signed.
712 Result =
static_cast<T >(UResult);
714 // Adding two positive numbers should result in a positive number.
717 // Adding two negatives should result in a negative number.
724/// Subtract two signed integers, computing the two's complement truncated
725/// result, returning true if an overflow occurred.
728#if __has_builtin(__builtin_sub_overflow)
729 return __builtin_sub_overflow(
X,
Y, &Result);
731 // Perform the unsigned addition.
732 using U = std::make_unsigned_t<T>;
733 const U UX =
static_cast<U
>(
X);
734 const U UY =
static_cast<U
>(
Y);
735 const U UResult = UX - UY;
737 // Convert to signed.
738 Result =
static_cast<T >(UResult);
740 // Subtracting a positive number from a negative results in a negative number.
743 // Subtracting a negative number from a positive results in a positive number.
750/// Multiply two signed integers, computing the two's complement truncated
751/// result, returning true if an overflow occurred.
754#if __has_builtin(__builtin_mul_overflow)
755 return __builtin_mul_overflow(
X,
Y, &Result);
757 // Perform the unsigned multiplication on absolute values.
758 using U = std::make_unsigned_t<T>;
759 const U UX =
X < 0 ? (0 -
static_cast<U
>(
X)) :
static_cast<U
>(
X);
760 const U UY =
Y < 0 ? (0 -
static_cast<U
>(
Y)) :
static_cast<U
>(
Y);
761 const U UResult = UX * UY;
763 // Convert to signed.
764 const bool IsNegative = (
X < 0) ^ (
Y < 0);
765 Result = IsNegative ? (0 - UResult) : UResult;
767 // If any of the args was 0, result is 0 and no overflow occurs.
768 if (UX == 0 || UY == 0)
771 // UX and UY are in [1, 2^n], where n is the number of digits.
772 // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
773 // positive) divided by an argument compares to the other.
775 return UX > (
static_cast<U
>(std::numeric_limits<T>::max()) + U(1)) / UY;
777 return UX > (
static_cast<U
>(std::numeric_limits<T>::max())) / UY;
781/// Type to force float point values onto the stack, so that x86 doesn't add
782/// hidden precision, avoiding rounding differences on various platforms.
783#if defined(__i386__) || defined(_M_IX86)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_DEPRECATED(MSG, FIX)
This file contains library features backported from future STL versions.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file implements the C++20 <bit> header.
LLVM Value Representation.
constexpr float inv_sqrtpif
constexpr const char * pis
constexpr const char * inv_pis
constexpr float inv_sqrt2f
constexpr float inv_sqrt3f
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
std::enable_if_t< std::is_signed_v< T >, T > MulOverflow(T X, T Y, T &Result)
Multiply two signed integers, computing the two's complement truncated result, returning true if an o...
constexpr bool divideSignedWouldOverflow(U Numerator, V Denominator)
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt mod(const DynamicAPInt &LHS, const DynamicAPInt &RHS)
is always non-negative.
constexpr uint64_t maxUIntN(uint64_t N)
Gets the maximum value for a N-bit unsigned integer.
constexpr size_t CTLog2()
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
unsigned Log2_64_Ceil(uint64_t Value)
Return the ceil log base 2 of the specified value, 64 if the value is zero.
constexpr bool isMask_32(uint32_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
constexpr T divideFloorSigned(U Numerator, V Denominator)
Returns the integer floor(Numerator / Denominator).
constexpr int64_t minIntN(int64_t N)
Gets the minimum value for a N-bit signed integer.
constexpr size_t ConstantLog2()
Compile time Log2.
constexpr T maskLeadingOnes(unsigned N)
Create a bitmask with the N left-most bits set to 1, and all other bits set to 0.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
constexpr bool isShiftedMask_32(uint32_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (32 bit ver...
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
constexpr T MinAlign(U A, V B)
A and B are either alignments or offsets.
constexpr T divideNearest(U Numerator, V Denominator)
Returns (Numerator / Denominator) rounded by round-half-up.
constexpr bool has_single_bit(T Value) noexcept
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
constexpr uint32_t Hi_32(uint64_t Value)
Return the high 32 bits of a 64 bit value.
constexpr T alignToPowerOf2(U Value, V Align)
Will overflow only if result is not representable in T.
constexpr bool isMask_64(uint64_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
std::enable_if_t< std::is_unsigned_v< T >, T > SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed=nullptr)
Multiply two unsigned integers, X and Y, and add the unsigned integer, A to the product.
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
std::common_type_t< std::make_unsigned_t< T >, std::make_unsigned_t< U > > common_uint
constexpr T divideCeilSigned(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
constexpr T maskLeadingZeros(unsigned N)
Create a bitmask with the N left-most bits set to 0, and all other bits set to 1.
@ Mod
The access may modify the value stored in memory.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
LLVM_ABI const float huge_valf
Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
std::enable_if_t< std::is_unsigned_v< T >, T > SaturatingMultiply(T X, T Y, bool *ResultOverflowed=nullptr)
Multiply two unsigned integers, X and Y, of type T.
constexpr T maskTrailingZeros(unsigned N)
Create a bitmask with the N right-most bits set to 0, and all other bits set to 1.
std::common_type_t< std::make_signed_t< T >, std::make_signed_t< U > > common_sint
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
constexpr T AbsoluteDifference(U X, V Y)
Subtract two unsigned integers, X and Y, of type T and return the absolute value of the result.
constexpr U AbsoluteValue(T X)
Return the absolute value of a signed integer, converted to the corresponding unsigned integer type.
constexpr bool isShiftedInt(int64_t x)
Checks if a signed integer is an N bit number shifted left by S.
constexpr int64_t maxIntN(int64_t N)
Gets the maximum value for a N-bit signed integer.
constexpr int32_t SignExtend32(uint32_t X)
Sign-extend the number in the bottom B bits of X to a 32-bit integer.
constexpr int countr_zero_constexpr(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
constexpr bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
constexpr T reverseBits(T Val)
Reverse the bits in Val.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
std::enable_if_t< std::is_signed_v< T >, T > AddOverflow(T X, T Y, T &Result)
Add two signed integers, computing the two's complement truncated result, returning true if overflow ...
float stack_float_t
Type to force float point values onto the stack, so that x86 doesn't add hidden precision,...
std::enable_if_t< std::is_signed_v< T >, T > SubOverflow(T X, T Y, T &Result)
Subtract two signed integers, computing the two's complement truncated result, returning true if an o...
std::enable_if_t< std::is_integral_v< T > &&std::is_integral_v< U > > enableif_int
Some template parameter helpers to optimize for bitwidth, for functions that take multiple arguments.
static const unsigned char BitReverseTable256[256]
Macro compressed bit reversal table for 256 bits.
constexpr T maskTrailingOnes(unsigned N)
Create a bitmask with the N right-most bits set to 1, and all other bits set to 0.
std::enable_if_t< std::is_unsigned_v< T >, T > SaturatingAdd(T X, T Y, bool *ResultOverflowed=nullptr)
Add two unsigned integers, X and Y, of type T.
constexpr bool isShiftedUInt(uint64_t x)
Checks if a unsigned integer is an N bit number shifted left by S.
constexpr uint64_t Make_64(uint32_t High, uint32_t Low)
Make a 64-bit integer from a high / low pair of 32-bit integers.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
This struct is a compact representation of a valid (non-zero power of two) alignment.