LLVM: lib/Transforms/Scalar/ConstraintElimination.cpp Source File

LLVM 22.0.0git
ConstraintElimination.cpp
Go to the documentation of this file.
1//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Eliminate conditions based on constraints collected from dominating
10// conditions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Scalar/ConstraintElimination.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/ScopeExit.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/Analysis/ConstraintSystem.h"
20#include "llvm/Analysis/GlobalsModRef.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/Analysis/MemoryBuiltins.h"
23#include "llvm/Analysis/OptimizationRemarkEmitter.h"
24#include "llvm/Analysis/ScalarEvolution.h"
25#include "llvm/Analysis/ScalarEvolutionExpressions.h"
26#include "llvm/Analysis/TargetLibraryInfo.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/DebugInfo.h"
30#include "llvm/IR/Dominators.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/IRBuilder.h"
33#include "llvm/IR/InstrTypes.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/Module.h"
36#include "llvm/IR/PatternMatch.h"
37#include "llvm/IR/Verifier.h"
38#include "llvm/Pass.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/DebugCounter.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Transforms/Utils/Cloning.h"
44#include "llvm/Transforms/Utils/ValueMapper.h"
45
46#include <optional>
47#include <string>
48
49using namespace llvm;
50using namespace PatternMatch;
51
52 #define DEBUG_TYPE "constraint-elimination"
53
54 STATISTIC(NumCondsRemoved, "Number of instructions removed");
55 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
56 "Controls which conditions are eliminated");
57
58static cl::opt<unsigned>
59 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
60 cl::desc("Maximum number of rows to keep in constraint system"));
61
62 static cl::opt<bool> DumpReproducers(
63 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
64 cl::desc("Dump IR to reproduce successful transformations."));
65
66 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
67 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
68
70 Instruction *UserI = cast<Instruction>(U.getUser());
71 if (auto *Phi = dyn_cast<PHINode>(UserI))
72 UserI = Phi->getIncomingBlock(U)->getTerminator();
73 return UserI;
74}
75
76namespace {
77/// Struct to express a condition of the form %Op0 Pred %Op1.
78struct ConditionTy {
79 CmpPredicate Pred;
80 Value *Op0 = nullptr;
81 Value *Op1 = nullptr;
82
83 ConditionTy() = default;
84 ConditionTy(CmpPredicate Pred, Value *Op0, Value *Op1)
85 : Pred(Pred), Op0(Op0), Op1(Op1) {}
86};
87
88/// Represents either
89/// * a condition that holds on entry to a block (=condition fact)
90/// * an assume (=assume fact)
91/// * a use of a compare instruction to simplify.
92/// It also tracks the Dominator DFS in and out numbers for each entry.
93struct FactOrCheck {
94 enum class EntryTy {
95 ConditionFact, /// A condition that holds on entry to a block.
96 InstFact, /// A fact that holds after Inst executed (e.g. an assume or
97 /// min/mix intrinsic.
98 InstCheck, /// An instruction to simplify (e.g. an overflow math
99 /// intrinsics).
100 UseCheck /// An use of a compare instruction to simplify.
101 };
102
103 union {
104 Instruction *Inst;
105 Use *U;
106 ConditionTy Cond;
107 };
108
109 /// A pre-condition that must hold for the current fact to be added to the
110 /// system.
111 ConditionTy DoesHold;
112
113 unsigned NumIn;
114 unsigned NumOut;
115 EntryTy Ty;
116
117 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst)
118 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
119 Ty(Ty) {}
120
121 FactOrCheck(DomTreeNode *DTN, Use *U)
122 : U(U), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
123 Ty(EntryTy::UseCheck) {}
124
125 FactOrCheck(DomTreeNode *DTN, CmpPredicate Pred, Value *Op0, Value *Op1,
126 ConditionTy Precond = {})
127 : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()),
128 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {}
129
130 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpPredicate Pred,
131 Value *Op0, Value *Op1,
132 ConditionTy Precond = {}) {
133 return FactOrCheck(DTN, Pred, Op0, Op1, Precond);
134 }
135
136 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) {
137 return FactOrCheck(EntryTy::InstFact, DTN, Inst);
138 }
139
140 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
141 return FactOrCheck(DTN, U);
142 }
143
144 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
145 return FactOrCheck(EntryTy::InstCheck, DTN, CI);
146 }
147
148 bool isCheck() const {
149 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck;
150 }
151
152 Instruction *getContextInst() const {
153 assert(!isConditionFact());
154 if (Ty == EntryTy::UseCheck)
155 return getContextInstForUse(*U);
156 return Inst;
157 }
158
159 Instruction *getInstructionToSimplify() const {
160 assert(isCheck());
161 if (Ty == EntryTy::InstCheck)
162 return Inst;
163 // The use may have been simplified to a constant already.
164 return dyn_cast<Instruction>(*U);
165 }
166
167 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; }
168};
169
170/// Keep state required to build worklist.
171struct State {
172 DominatorTree &DT;
173 LoopInfo &LI;
174 ScalarEvolution &SE;
175 TargetLibraryInfo &TLI;
176 SmallVector<FactOrCheck, 64> WorkList;
177
178 State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE,
179 TargetLibraryInfo &TLI)
180 : DT(DT), LI(LI), SE(SE), TLI(TLI) {}
181
182 /// Process block \p BB and add known facts to work-list.
183 void addInfoFor(BasicBlock &BB);
184
185 /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares
186 /// controlling the loop header.
187 void addInfoForInductions(BasicBlock &BB);
188
189 /// Returns true if we can add a known condition from BB to its successor
190 /// block Succ.
191 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
192 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
193 }
194};
195
196class ConstraintInfo;
197
198struct StackEntry {
199 unsigned NumIn;
200 unsigned NumOut;
201 bool IsSigned = false;
202 /// Variables that can be removed from the system once the stack entry gets
203 /// removed.
204 SmallVector<Value *, 2> ValuesToRelease;
205
206 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
207 SmallVector<Value *, 2> ValuesToRelease)
208 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
209 ValuesToRelease(std::move(ValuesToRelease)) {}
210};
211
212struct ConstraintTy {
213 SmallVector<int64_t, 8> Coefficients;
214 SmallVector<ConditionTy, 2> Preconditions;
215
216 SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
217
218 bool IsSigned = false;
219
220 ConstraintTy() = default;
221
222 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq,
223 bool IsNe)
224 : Coefficients(std::move(Coefficients)), IsSigned(IsSigned), IsEq(IsEq),
225 IsNe(IsNe) {}
226
227 unsigned size() const { return Coefficients.size(); }
228
229 unsigned empty() const { return Coefficients.empty(); }
230
231 /// Returns true if all preconditions for this list of constraints are
232 /// satisfied given \p Info.
233 bool isValid(const ConstraintInfo &Info) const;
234
235 bool isEq() const { return IsEq; }
236
237 bool isNe() const { return IsNe; }
238
239 /// Check if the current constraint is implied by the given ConstraintSystem.
240 ///
241 /// \return true or false if the constraint is proven to be respectively true,
242 /// or false. When the constraint cannot be proven to be either true or false,
243 /// std::nullopt is returned.
244 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
245
246private:
247 bool IsEq = false;
248 bool IsNe = false;
249};
250
251/// Wrapper encapsulating separate constraint systems and corresponding value
252/// mappings for both unsigned and signed information. Facts are added to and
253/// conditions are checked against the corresponding system depending on the
254/// signed-ness of their predicates. While the information is kept separate
255/// based on signed-ness, certain conditions can be transferred between the two
256/// systems.
257class ConstraintInfo {
258
259 ConstraintSystem UnsignedCS;
260 ConstraintSystem SignedCS;
261
262 const DataLayout &DL;
263
264public:
265 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
266 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {
267 auto &Value2Index = getValue2Index(false);
268 // Add Arg > -1 constraints to unsigned system for all function arguments.
269 for (Value *Arg : FunctionArgs) {
270 ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
271 false, false, false);
272 VarPos.Coefficients[Value2Index[Arg]] = -1;
273 UnsignedCS.addVariableRow(VarPos.Coefficients);
274 }
275 }
276
277 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
278 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
279 }
280 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
281 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
282 }
283
284 ConstraintSystem &getCS(bool Signed) {
285 return Signed ? SignedCS : UnsignedCS;
286 }
287 const ConstraintSystem &getCS(bool Signed) const {
288 return Signed ? SignedCS : UnsignedCS;
289 }
290
291 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
292 void popLastNVariables(bool Signed, unsigned N) {
293 getCS(Signed).popLastNVariables(N);
294 }
295
296 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
297
298 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
299 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
300
301 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
302 /// constraints, using indices from the corresponding constraint system.
303 /// New variables that need to be added to the system are collected in
304 /// \p NewVariables.
305 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
306 SmallVectorImpl<Value *> &NewVariables,
307 bool ForceSignedSystem = false) const;
308
309 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
310 /// constraints using getConstraint. Returns an empty constraint if the result
311 /// cannot be used to query the existing constraint system, e.g. because it
312 /// would require adding new variables. Also tries to convert signed
313 /// predicates to unsigned ones if possible to allow using the unsigned system
314 /// which increases the effectiveness of the signed <-> unsigned transfer
315 /// logic.
316 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
317 Value *Op1) const;
318
319 /// Try to add information from \p A \p Pred \p B to the unsigned/signed
320 /// system if \p Pred is signed/unsigned.
321 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
322 unsigned NumIn, unsigned NumOut,
323 SmallVectorImpl<StackEntry> &DFSInStack);
324
325private:
326 /// Adds facts into constraint system. \p ForceSignedSystem can be set when
327 /// the \p Pred is eq/ne, and signed constraint system is used when it's
328 /// specified.
329 void addFactImpl(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
330 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack,
331 bool ForceSignedSystem);
332};
333
334/// Represents a (Coefficient * Variable) entry after IR decomposition.
335struct DecompEntry {
336 int64_t Coefficient;
337 Value *Variable;
338 /// True if the variable is known positive in the current constraint.
339 bool IsKnownNonNegative;
340
341 DecompEntry(int64_t Coefficient, Value *Variable,
342 bool IsKnownNonNegative = false)
343 : Coefficient(Coefficient), Variable(Variable),
344 IsKnownNonNegative(IsKnownNonNegative) {}
345};
346
347/// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
348struct Decomposition {
349 int64_t Offset = 0;
350 SmallVector<DecompEntry, 3> Vars;
351
352 Decomposition(int64_t Offset) : Offset(Offset) {}
353 Decomposition(Value *V, bool IsKnownNonNegative = false) {
354 Vars.emplace_back(1, V, IsKnownNonNegative);
355 }
356 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
357 : Offset(Offset), Vars(Vars) {}
358
359 /// Add \p OtherOffset and return true if the operation overflows, i.e. the
360 /// new decomposition is invalid.
361 [[nodiscard]] bool add(int64_t OtherOffset) {
362 return AddOverflow(Offset, OtherOffset, Offset);
363 }
364
365 /// Add \p Other and return true if the operation overflows, i.e. the new
366 /// decomposition is invalid.
367 [[nodiscard]] bool add(const Decomposition &Other) {
368 if (add(Other.Offset))
369 return true;
370 append_range(Vars, Other.Vars);
371 return false;
372 }
373
374 /// Subtract \p Other and return true if the operation overflows, i.e. the new
375 /// decomposition is invalid.
376 [[nodiscard]] bool sub(const Decomposition &Other) {
377 Decomposition Tmp = Other;
378 if (Tmp.mul(-1))
379 return true;
380 if (add(Tmp.Offset))
381 return true;
382 append_range(Vars, Tmp.Vars);
383 return false;
384 }
385
386 /// Multiply all coefficients by \p Factor and return true if the operation
387 /// overflows, i.e. the new decomposition is invalid.
388 [[nodiscard]] bool mul(int64_t Factor) {
389 if (MulOverflow(Offset, Factor, Offset))
390 return true;
391 for (auto &Var : Vars)
392 if (MulOverflow(Var.Coefficient, Factor, Var.Coefficient))
393 return true;
394 return false;
395 }
396};
397
398// Variable and constant offsets for a chain of GEPs, with base pointer BasePtr.
399struct OffsetResult {
400 Value *BasePtr;
401 APInt ConstantOffset;
402 SmallMapVector<Value *, APInt, 4> VariableOffsets;
403 GEPNoWrapFlags NW;
404
405 OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {}
406
407 OffsetResult(GEPOperator &GEP, const DataLayout &DL)
408 : BasePtr(GEP.getPointerOperand()), NW(GEP.getNoWrapFlags()) {
409 ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0);
410 }
411};
412} // namespace
413
414// Try to collect variable and constant offsets for \p GEP, partly traversing
415// nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting
416// the offset fails.
418 OffsetResult Result(GEP, DL);
419 unsigned BitWidth = Result.ConstantOffset.getBitWidth();
420 if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets,
421 Result.ConstantOffset))
422 return {};
423
424 // If we have a nested GEP, check if we can combine the constant offset of the
425 // inner GEP with the outer GEP.
426 if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) {
427 SmallMapVector<Value *, APInt, 4> VariableOffsets2;
428 APInt ConstantOffset2(BitWidth, 0);
429 bool CanCollectInner = InnerGEP->collectOffset(
430 DL, BitWidth, VariableOffsets2, ConstantOffset2);
431 // TODO: Support cases with more than 1 variable offset.
432 if (!CanCollectInner || Result.VariableOffsets.size() > 1 ||
433 VariableOffsets2.size() > 1 ||
434 (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) {
435 // More than 1 variable index, use outer result.
436 return Result;
437 }
438 Result.BasePtr = InnerGEP->getPointerOperand();
439 Result.ConstantOffset += ConstantOffset2;
440 if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1)
441 Result.VariableOffsets = VariableOffsets2;
442 Result.NW &= InnerGEP->getNoWrapFlags();
443 }
444 return Result;
445}
446
447static Decomposition decompose(Value *V,
448 SmallVectorImpl<ConditionTy> &Preconditions,
449 bool IsSigned, const DataLayout &DL);
450
451 static bool canUseSExt(ConstantInt *CI) {
452 const APInt &Val = CI->getValue();
454}
455
456 static Decomposition decomposeGEP(GEPOperator &GEP,
457 SmallVectorImpl<ConditionTy> &Preconditions,
458 bool IsSigned, const DataLayout &DL) {
459 // Do not reason about pointers where the index size is larger than 64 bits,
460 // as the coefficients used to encode constraints are 64 bit integers.
461 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
462 return &GEP;
463
464 assert(!IsSigned && "The logic below only supports decomposition for "
465 "unsigned predicates at the moment.");
466 const auto &[BasePtr, ConstantOffset, VariableOffsets, NW] =
468 // We support either plain gep nuw, or gep nusw with non-negative offset,
469 // which implies gep nuw.
470 if (!BasePtr || NW == GEPNoWrapFlags::none())
471 return &GEP;
472
473 Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr));
474 for (auto [Index, Scale] : VariableOffsets) {
475 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
476 if (IdxResult.mul(Scale.getSExtValue()))
477 return &GEP;
478 if (Result.add(IdxResult))
479 return &GEP;
480
481 if (!NW.hasNoUnsignedWrap()) {
482 // Try to prove nuw from nusw and nneg.
483 assert(NW.hasNoUnsignedSignedWrap() && "Must have nusw flag");
484 if (!isKnownNonNegative(Index, DL))
485 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
486 ConstantInt::get(Index->getType(), 0));
487 }
488 }
489 return Result;
490}
491
492// Decomposes \p V into a constant offset + list of pairs { Coefficient,
493// Variable } where Coefficient * Variable. The sum of the constant offset and
494// pairs equals \p V.
495 static Decomposition decompose(Value *V,
496 SmallVectorImpl<ConditionTy> &Preconditions,
497 bool IsSigned, const DataLayout &DL) {
498
499 auto MergeResults = [&Preconditions, IsSigned,
500 &DL](Value *A, Value *B,
501 bool IsSignedB) -> std::optional<Decomposition> {
502 auto ResA = decompose(A, Preconditions, IsSigned, DL);
503 auto ResB = decompose(B, Preconditions, IsSignedB, DL);
504 if (ResA.add(ResB))
505 return std::nullopt;
506 return ResA;
507 };
508
509 Type *Ty = V->getType()->getScalarType();
510 if (Ty->isPointerTy() && !IsSigned) {
511 if (auto *GEP = dyn_cast<GEPOperator>(V))
512 return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
514 return int64_t(0);
515
516 return V;
517 }
518
519 // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so
520 // coefficient add/mul may wrap, while the operation in the full bit width
521 // would not.
522 if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64)
523 return V;
524
525 bool IsKnownNonNegative = false;
526
527 // Decompose \p V used with a signed predicate.
528 if (IsSigned) {
529 if (auto *CI = dyn_cast<ConstantInt>(V)) {
530 if (canUseSExt(CI))
531 return CI->getSExtValue();
532 }
533 Value *Op0;
534 Value *Op1;
535
536 if (match(V, m_SExt(m_Value(Op0))))
537 V = Op0;
538 else if (match(V, m_NNegZExt(m_Value(Op0)))) {
539 V = Op0;
540 IsKnownNonNegative = true;
541 } else if (match(V, m_NSWTrunc(m_Value(Op0)))) {
542 if (Op0->getType()->getScalarSizeInBits() <= 64)
543 V = Op0;
544 }
545
546 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
547 if (auto Decomp = MergeResults(Op0, Op1, IsSigned))
548 return *Decomp;
549 return {V, IsKnownNonNegative};
550 }
551
552 if (match(V, m_NSWSub(m_Value(Op0), m_Value(Op1)))) {
553 auto ResA = decompose(Op0, Preconditions, IsSigned, DL);
554 auto ResB = decompose(Op1, Preconditions, IsSigned, DL);
555 if (!ResA.sub(ResB))
556 return ResA;
557 return {V, IsKnownNonNegative};
558 }
559
560 ConstantInt *CI;
561 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) {
562 auto Result = decompose(Op0, Preconditions, IsSigned, DL);
563 if (!Result.mul(CI->getSExtValue()))
564 return Result;
565 return {V, IsKnownNonNegative};
566 }
567
568 // (shl nsw x, shift) is (mul nsw x, (1<<shift)), with the exception of
569 // shift == bw-1.
570 if (match(V, m_NSWShl(m_Value(Op0), m_ConstantInt(CI)))) {
571 uint64_t Shift = CI->getValue().getLimitedValue();
572 if (Shift < Ty->getIntegerBitWidth() - 1) {
573 assert(Shift < 64 && "Would overflow");
574 auto Result = decompose(Op0, Preconditions, IsSigned, DL);
575 if (!Result.mul(int64_t(1) << Shift))
576 return Result;
577 return {V, IsKnownNonNegative};
578 }
579 }
580
581 return {V, IsKnownNonNegative};
582 }
583
584 if (auto *CI = dyn_cast<ConstantInt>(V)) {
585 if (CI->uge(MaxConstraintValue))
586 return V;
587 return int64_t(CI->getZExtValue());
588 }
589
590 Value *Op0;
591 if (match(V, m_ZExt(m_Value(Op0)))) {
592 IsKnownNonNegative = true;
593 V = Op0;
594 } else if (match(V, m_SExt(m_Value(Op0)))) {
595 V = Op0;
596 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
597 ConstantInt::get(Op0->getType(), 0));
598 } else if (auto *Trunc = dyn_cast<TruncInst>(V)) {
599 if (Trunc->getSrcTy()->getScalarSizeInBits() <= 64) {
600 if (Trunc->hasNoUnsignedWrap() || Trunc->hasNoSignedWrap()) {
601 V = Trunc->getOperand(0);
602 if (!Trunc->hasNoUnsignedWrap())
603 Preconditions.emplace_back(CmpInst::ICMP_SGE, V,
604 ConstantInt::get(V->getType(), 0));
605 }
606 }
607 }
608
609 Value *Op1;
610 ConstantInt *CI;
611 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
612 if (auto Decomp = MergeResults(Op0, Op1, IsSigned))
613 return *Decomp;
614 return {V, IsKnownNonNegative};
615 }
616
617 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
618 canUseSExt(CI)) {
619 Preconditions.emplace_back(
621 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
622 if (auto Decomp = MergeResults(Op0, CI, true))
623 return *Decomp;
624 return {V, IsKnownNonNegative};
625 }
626
627 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
628 if (!isKnownNonNegative(Op0, DL))
629 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
630 ConstantInt::get(Op0->getType(), 0));
631 if (!isKnownNonNegative(Op1, DL))
632 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
633 ConstantInt::get(Op1->getType(), 0));
634
635 if (auto Decomp = MergeResults(Op0, Op1, IsSigned))
636 return *Decomp;
637 return {V, IsKnownNonNegative};
638 }
639
640 // Decompose or as an add if there are no common bits between the operands.
641 if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI)))) {
642 if (auto Decomp = MergeResults(Op0, CI, IsSigned))
643 return *Decomp;
644 return {V, IsKnownNonNegative};
645 }
646
647 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
648 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
649 return {V, IsKnownNonNegative};
650 auto Result = decompose(Op1, Preconditions, IsSigned, DL);
651 if (!Result.mul(int64_t{1} << CI->getSExtValue()))
652 return Result;
653 return {V, IsKnownNonNegative};
654 }
655
656 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
657 (!CI->isNegative())) {
658 auto Result = decompose(Op1, Preconditions, IsSigned, DL);
659 if (!Result.mul(CI->getSExtValue()))
660 return Result;
661 return {V, IsKnownNonNegative};
662 }
663
664 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) {
665 auto ResA = decompose(Op0, Preconditions, IsSigned, DL);
666 auto ResB = decompose(Op1, Preconditions, IsSigned, DL);
667 if (!ResA.sub(ResB))
668 return ResA;
669 return {V, IsKnownNonNegative};
670 }
671
672 return {V, IsKnownNonNegative};
673}
674
675ConstraintTy
676ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
677 SmallVectorImpl<Value *> &NewVariables,
678 bool ForceSignedSystem) const {
679 assert(NewVariables.empty() && "NewVariables must be empty when passed in");
680 assert((!ForceSignedSystem || CmpInst::isEquality(Pred)) &&
681 "signed system can only be forced on eq/ne");
682
683 bool IsEq = false;
684 bool IsNe = false;
685
686 // Try to convert Pred to one of ULE/ULT/SLE/SLT.
687 switch (Pred) {
688 case CmpInst::ICMP_UGT:
689 case CmpInst::ICMP_UGE:
690 case CmpInst::ICMP_SGT:
691 case CmpInst::ICMP_SGE: {
692 Pred = CmpInst::getSwappedPredicate(Pred);
693 std::swap(Op0, Op1);
694 break;
695 }
696 case CmpInst::ICMP_EQ:
697 if (!ForceSignedSystem && match(Op1, m_Zero())) {
698 Pred = CmpInst::ICMP_ULE;
699 } else {
700 IsEq = true;
701 Pred = CmpInst::ICMP_ULE;
702 }
703 break;
704 case CmpInst::ICMP_NE:
705 if (!ForceSignedSystem && match(Op1, m_Zero())) {
706 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
707 std::swap(Op0, Op1);
708 } else {
709 IsNe = true;
710 Pred = CmpInst::ICMP_ULE;
711 }
712 break;
713 default:
714 break;
715 }
716
717 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
718 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
719 return {};
720
721 SmallVector<ConditionTy, 4> Preconditions;
722 bool IsSigned = ForceSignedSystem || CmpInst::isSigned(Pred);
723 auto &Value2Index = getValue2Index(IsSigned);
724 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
725 Preconditions, IsSigned, DL);
726 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
727 Preconditions, IsSigned, DL);
728 int64_t Offset1 = ADec.Offset;
729 int64_t Offset2 = BDec.Offset;
730 Offset1 *= -1;
731
732 auto &VariablesA = ADec.Vars;
733 auto &VariablesB = BDec.Vars;
734
735 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
736 // new entry to NewVariables.
737 SmallDenseMap<Value *, unsigned> NewIndexMap;
738 auto GetOrAddIndex = [&Value2Index, &NewVariables,
739 &NewIndexMap](Value *V) -> unsigned {
740 auto V2I = Value2Index.find(V);
741 if (V2I != Value2Index.end())
742 return V2I->second;
743 auto Insert =
744 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
745 if (Insert.second)
746 NewVariables.push_back(V);
747 return Insert.first->second;
748 };
749
750 // Make sure all variables have entries in Value2Index or NewVariables.
751 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
752 GetOrAddIndex(KV.Variable);
753
754 // Build result constraint, by first adding all coefficients from A and then
755 // subtracting all coefficients from B.
756 ConstraintTy Res(
757 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
758 IsSigned, IsEq, IsNe);
759 // Collect variables that are known to be positive in all uses in the
760 // constraint.
761 SmallDenseMap<Value *, bool> KnownNonNegativeVariables;
762 auto &R = Res.Coefficients;
763 for (const auto &KV : VariablesA) {
764 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
765 auto I =
766 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
767 I.first->second &= KV.IsKnownNonNegative;
768 }
769
770 for (const auto &KV : VariablesB) {
771 auto &Coeff = R[GetOrAddIndex(KV.Variable)];
772 if (SubOverflow(Coeff, KV.Coefficient, Coeff))
773 return {};
774 auto I =
775 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
776 I.first->second &= KV.IsKnownNonNegative;
777 }
778
779 int64_t OffsetSum;
780 if (AddOverflow(Offset1, Offset2, OffsetSum))
781 return {};
782 if (Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT)
783 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
784 return {};
785 R[0] = OffsetSum;
786 Res.Preconditions = std::move(Preconditions);
787
788 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
789 // variables.
790 while (!NewVariables.empty()) {
791 int64_t Last = R.back();
792 if (Last != 0)
793 break;
794 R.pop_back();
795 Value *RemovedV = NewVariables.pop_back_val();
796 NewIndexMap.erase(RemovedV);
797 }
798
799 // Add extra constraints for variables that are known positive.
800 for (auto &KV : KnownNonNegativeVariables) {
801 if (!KV.second ||
802 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
803 continue;
804 auto &C = Res.ExtraInfo.emplace_back(
805 Value2Index.size() + NewVariables.size() + 1, 0);
806 C[GetOrAddIndex(KV.first)] = -1;
807 }
808 return Res;
809}
810
811ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
812 Value *Op0,
813 Value *Op1) const {
814 Constant *NullC = Constant::getNullValue(Op0->getType());
815 // Handle trivially true compares directly to avoid adding V UGE 0 constraints
816 // for all variables in the unsigned system.
817 if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) ||
818 (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) {
819 auto &Value2Index = getValue2Index(false);
820 // Return constraint that's trivially true.
821 return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false,
822 false, false);
823 }
824
825 // If both operands are known to be non-negative, change signed predicates to
826 // unsigned ones. This increases the reasoning effectiveness in combination
827 // with the signed <-> unsigned transfer logic.
828 if (CmpInst::isSigned(Pred) &&
829 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
830 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
831 Pred = ICmpInst::getUnsignedPredicate(Pred);
832
833 SmallVector<Value *> NewVariables;
834 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
835 if (!NewVariables.empty())
836 return {};
837 return R;
838}
839
840bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
841 return Coefficients.size() > 0 &&
842 all_of(Preconditions, [&Info](const ConditionTy &C) {
843 return Info.doesHold(C.Pred, C.Op0, C.Op1);
844 });
845}
846
847std::optional<bool>
848ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
849 bool IsConditionImplied = CS.isConditionImplied(Coefficients);
850
851 if (IsEq || IsNe) {
852 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
853 bool IsNegatedOrEqualImplied =
854 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
855
856 // In order to check that `%a == %b` is true (equality), both conditions `%a
857 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq`
858 // is true), we return true if they both hold, false in the other cases.
859 if (IsConditionImplied && IsNegatedOrEqualImplied)
860 return IsEq;
861
862 auto Negated = ConstraintSystem::negate(Coefficients);
863 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
864
865 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
866 bool IsStrictLessThanImplied =
867 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
868
869 // In order to check that `%a != %b` is true (non-equality), either
870 // condition `%a > %b` or `%a < %b` must hold true. When checking for
871 // non-equality (`IsNe` is true), we return true if one of the two holds,
872 // false in the other cases.
873 if (IsNegatedImplied || IsStrictLessThanImplied)
874 return IsNe;
875
876 return std::nullopt;
877 }
878
879 if (IsConditionImplied)
880 return true;
881
882 auto Negated = ConstraintSystem::negate(Coefficients);
883 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
884 if (IsNegatedImplied)
885 return false;
886
887 // Neither the condition nor its negated holds, did not prove anything.
888 return std::nullopt;
889}
890
891bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
892 Value *B) const {
893 auto R = getConstraintForSolving(Pred, A, B);
894 return R.isValid(*this) &&
895 getCS(R.IsSigned).isConditionImplied(R.Coefficients);
896}
897
898void ConstraintInfo::transferToOtherSystem(
899 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
900 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
901 auto IsKnownNonNegative = [this](Value *V) {
902 return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) ||
903 isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1);
904 };
905 // Check if we can combine facts from the signed and unsigned systems to
906 // derive additional facts.
907 if (!A->getType()->isIntegerTy())
908 return;
909 // FIXME: This currently depends on the order we add facts. Ideally we
910 // would first add all known facts and only then try to add additional
911 // facts.
912 switch (Pred) {
913 default:
914 break;
915 case CmpInst::ICMP_ULT:
916 case CmpInst::ICMP_ULE:
917 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B.
918 if (IsKnownNonNegative(B)) {
919 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
920 NumOut, DFSInStack);
921 addFact(ICmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
922 DFSInStack);
923 }
924 break;
925 case CmpInst::ICMP_UGE:
926 case CmpInst::ICMP_UGT:
927 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B.
928 if (IsKnownNonNegative(A)) {
929 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn,
930 NumOut, DFSInStack);
931 addFact(ICmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
932 DFSInStack);
933 }
934 break;
935 case CmpInst::ICMP_SLT:
936 if (IsKnownNonNegative(A))
937 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
938 break;
939 case CmpInst::ICMP_SGT: {
940 if (doesHold(CmpInst::ICMP_SGE, B, Constant::getAllOnesValue(B->getType())))
941 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
942 NumOut, DFSInStack);
943 if (IsKnownNonNegative(B))
944 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
945
946 break;
947 }
948 case CmpInst::ICMP_SGE:
949 if (IsKnownNonNegative(B))
950 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
951 break;
952 }
953}
954
955#ifndef NDEBUG
956
958 const DenseMap<Value *, unsigned> &Value2Index) {
959 ConstraintSystem CS(Value2Index);
961 CS.dump();
962}
963#endif
964
965void State::addInfoForInductions(BasicBlock &BB) {
966 auto *L = LI.getLoopFor(&BB);
967 if (!L || L->getHeader() != &BB)
968 return;
969
970 Value *A;
971 Value *B;
972 CmpPredicate Pred;
973
974 if (!match(BB.getTerminator(),
975 m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value())))
976 return;
977 PHINode *PN = dyn_cast<PHINode>(A);
978 if (!PN) {
979 Pred = CmpInst::getSwappedPredicate(Pred);
980 std::swap(A, B);
981 PN = dyn_cast<PHINode>(A);
982 }
983
984 if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 ||
985 !SE.isSCEVable(PN->getType()))
986 return;
987
988 BasicBlock *InLoopSucc = nullptr;
989 if (Pred == CmpInst::ICMP_NE)
990 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0);
991 else if (Pred == CmpInst::ICMP_EQ)
992 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1);
993 else
994 return;
995
996 if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB)
997 return;
998
999 auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN));
1000 BasicBlock *LoopPred = L->getLoopPredecessor();
1001 if (!AR || AR->getLoop() != L || !LoopPred)
1002 return;
1003
1004 const SCEV *StartSCEV = AR->getStart();
1005 Value *StartValue = nullptr;
1006 if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) {
1007 StartValue = C->getValue();
1008 } else {
1009 StartValue = PN->getIncomingValueForBlock(LoopPred);
1010 assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value");
1011 }
1012
1013 DomTreeNode *DTN = DT.getNode(InLoopSucc);
1014 auto IncUnsigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT);
1015 auto IncSigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_SGT);
1016 bool MonotonicallyIncreasingUnsigned =
1017 IncUnsigned == ScalarEvolution::MonotonicallyIncreasing;
1018 bool MonotonicallyIncreasingSigned =
1019 IncSigned == ScalarEvolution::MonotonicallyIncreasing;
1020 // If SCEV guarantees that AR does not wrap, PN >= StartValue can be added
1021 // unconditionally.
1022 if (MonotonicallyIncreasingUnsigned)
1023 WorkList.push_back(
1024 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue));
1025 if (MonotonicallyIncreasingSigned)
1026 WorkList.push_back(
1027 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_SGE, PN, StartValue));
1028
1029 APInt StepOffset;
1030 if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
1031 StepOffset = C->getAPInt();
1032 else
1033 return;
1034
1035 // Make sure the bound B is loop-invariant.
1036 if (!L->isLoopInvariant(B))
1037 return;
1038
1039 // Handle negative steps.
1040 if (StepOffset.isNegative()) {
1041 // TODO: Extend to allow steps > -1.
1042 if (!(-StepOffset).isOne())
1043 return;
1044
1045 // AR may wrap.
1046 // Add StartValue >= PN conditional on B <= StartValue which guarantees that
1047 // the loop exits before wrapping with a step of -1.
1048 WorkList.push_back(FactOrCheck::getConditionFact(
1049 DTN, CmpInst::ICMP_UGE, StartValue, PN,
1050 ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
1051 WorkList.push_back(FactOrCheck::getConditionFact(
1052 DTN, CmpInst::ICMP_SGE, StartValue, PN,
1053 ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
1054 // Add PN > B conditional on B <= StartValue which guarantees that the loop
1055 // exits when reaching B with a step of -1.
1056 WorkList.push_back(FactOrCheck::getConditionFact(
1057 DTN, CmpInst::ICMP_UGT, PN, B,
1058 ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
1059 WorkList.push_back(FactOrCheck::getConditionFact(
1060 DTN, CmpInst::ICMP_SGT, PN, B,
1061 ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
1062 return;
1063 }
1064
1065 // Make sure AR either steps by 1 or that the value we compare against is a
1066 // GEP based on the same start value and all offsets are a multiple of the
1067 // step size, to guarantee that the induction will reach the value.
1068 if (StepOffset.isZero() || StepOffset.isNegative())
1069 return;
1070
1071 if (!StepOffset.isOne()) {
1072 // Check whether B-Start is known to be a multiple of StepOffset.
1073 const SCEV *BMinusStart = SE.getMinusSCEV(SE.getSCEV(B), StartSCEV);
1074 if (isa<SCEVCouldNotCompute>(BMinusStart) ||
1075 !SE.getConstantMultiple(BMinusStart).urem(StepOffset).isZero())
1076 return;
1077 }
1078
1079 // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which
1080 // guarantees that the loop exits before wrapping in combination with the
1081 // restrictions on B and the step above.
1082 if (!MonotonicallyIncreasingUnsigned)
1083 WorkList.push_back(FactOrCheck::getConditionFact(
1084 DTN, CmpInst::ICMP_UGE, PN, StartValue,
1085 ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1086 if (!MonotonicallyIncreasingSigned)
1087 WorkList.push_back(FactOrCheck::getConditionFact(
1088 DTN, CmpInst::ICMP_SGE, PN, StartValue,
1089 ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1090
1091 WorkList.push_back(FactOrCheck::getConditionFact(
1092 DTN, CmpInst::ICMP_ULT, PN, B,
1093 ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1094 WorkList.push_back(FactOrCheck::getConditionFact(
1095 DTN, CmpInst::ICMP_SLT, PN, B,
1096 ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1097
1098 // Try to add condition from header to the dedicated exit blocks. When exiting
1099 // either with EQ or NE in the header, we know that the induction value must
1100 // be u<= B, as other exits may only exit earlier.
1101 assert(!StepOffset.isNegative() && "induction must be increasing");
1102 assert((Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) &&
1103 "unsupported predicate");
1104 ConditionTy Precond = {CmpInst::ICMP_ULE, StartValue, B};
1105 SmallVector<BasicBlock *> ExitBBs;
1106 L->getExitBlocks(ExitBBs);
1107 for (BasicBlock *EB : ExitBBs) {
1108 // Bail out on non-dedicated exits.
1109 if (DT.dominates(&BB, EB)) {
1110 WorkList.emplace_back(FactOrCheck::getConditionFact(
1111 DT.getNode(EB), CmpInst::ICMP_ULE, A, B, Precond));
1112 }
1113 }
1114}
1115
1117 uint64_t AccessSize,
1118 CmpPredicate &Pred, Value *&A,
1119 Value *&B, const DataLayout &DL,
1120 const TargetLibraryInfo &TLI) {
1122 if (!Offset.NW.hasNoUnsignedWrap())
1123 return false;
1124
1125 if (Offset.VariableOffsets.size() != 1)
1126 return false;
1127
1128 uint64_t BitWidth = Offset.ConstantOffset.getBitWidth();
1129 auto &[Index, Scale] = Offset.VariableOffsets.front();
1130 // Bail out on non-canonical GEPs.
1131 if (Index->getType()->getScalarSizeInBits() != BitWidth)
1132 return false;
1133
1134 ObjectSizeOpts Opts;
1135 // Workaround for gep inbounds, ptr null, idx.
1136 Opts.NullIsUnknownSize = true;
1137 // Be conservative since we are not clear on whether an out of bounds access
1138 // to the padding is UB or not.
1139 Opts.RoundToAlign = true;
1140 std::optional<TypeSize> Size =
1141 getBaseObjectSize(Offset.BasePtr, DL, &TLI, Opts);
1142 if (!Size || Size->isScalable())
1143 return false;
1144
1145 // Index * Scale + ConstOffset + AccessSize <= AllocSize
1146 // With nuw flag, we know that the index addition doesn't have unsigned wrap.
1147 // If (AllocSize - (ConstOffset + AccessSize)) wraps around, there is no valid
1148 // value for Index.
1149 APInt MaxIndex = (APInt(BitWidth, Size->getFixedValue() - AccessSize,
1150 /*isSigned=*/false, /*implicitTrunc=*/true) -
1151 Offset.ConstantOffset)
1152 .udiv(Scale);
1153 Pred = ICmpInst::ICMP_ULE;
1154 A = Index;
1155 B = ConstantInt::get(Index->getType(), MaxIndex);
1156 return true;
1157}
1158
1159void State::addInfoFor(BasicBlock &BB) {
1160 addInfoForInductions(BB);
1161 auto &DL = BB.getDataLayout();
1162
1163 // True as long as the current instruction is guaranteed to execute.
1164 bool GuaranteedToExecute = true;
1165 // Queue conditions and assumes.
1166 for (Instruction &I : BB) {
1167 if (auto *Cmp = dyn_cast<ICmpInst>(&I)) {
1168 for (Use &U : Cmp->uses()) {
1169 auto *UserI = getContextInstForUse(U);
1170 auto *DTN = DT.getNode(UserI->getParent());
1171 if (!DTN)
1172 continue;
1173 WorkList.push_back(FactOrCheck::getCheck(DTN, &U));
1174 }
1175 continue;
1176 }
1177
1178 auto AddFactFromMemoryAccess = [&](Value *Ptr, Type *AccessType) {
1179 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1180 if (!GEP)
1181 return;
1182 TypeSize AccessSize = DL.getTypeStoreSize(AccessType);
1183 if (!AccessSize.isFixed())
1184 return;
1185 if (GuaranteedToExecute) {
1186 CmpPredicate Pred;
1187 Value *A, *B;
1188 if (getConstraintFromMemoryAccess(*GEP, AccessSize.getFixedValue(),
1189 Pred, A, B, DL, TLI)) {
1190 // The memory access is guaranteed to execute when BB is entered,
1191 // hence the constraint holds on entry to BB.
1192 WorkList.emplace_back(FactOrCheck::getConditionFact(
1193 DT.getNode(I.getParent()), Pred, A, B));
1194 }
1195 } else {
1196 WorkList.emplace_back(
1197 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I));
1198 }
1199 };
1200
1201 if (auto *LI = dyn_cast<LoadInst>(&I)) {
1202 if (!LI->isVolatile())
1203 AddFactFromMemoryAccess(LI->getPointerOperand(), LI->getAccessType());
1204 }
1205 if (auto *SI = dyn_cast<StoreInst>(&I)) {
1206 if (!SI->isVolatile())
1207 AddFactFromMemoryAccess(SI->getPointerOperand(), SI->getAccessType());
1208 }
1209
1210 auto *II = dyn_cast<IntrinsicInst>(&I);
1211 Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic;
1212 switch (ID) {
1213 case Intrinsic::assume: {
1214 Value *A, *B;
1215 CmpPredicate Pred;
1216 if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B))))
1217 break;
1218 if (GuaranteedToExecute) {
1219 // The assume is guaranteed to execute when BB is entered, hence Cond
1220 // holds on entry to BB.
1221 WorkList.emplace_back(FactOrCheck::getConditionFact(
1222 DT.getNode(I.getParent()), Pred, A, B));
1223 } else {
1224 WorkList.emplace_back(
1225 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I));
1226 }
1227 break;
1228 }
1229 // Enqueue ssub_with_overflow for simplification.
1230 case Intrinsic::ssub_with_overflow:
1231 case Intrinsic::ucmp:
1232 case Intrinsic::scmp:
1233 WorkList.push_back(
1234 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1235 break;
1236 // Enqueue the intrinsics to add extra info.
1237 case Intrinsic::umin:
1238 case Intrinsic::umax:
1239 case Intrinsic::smin:
1240 case Intrinsic::smax:
1241 // TODO: handle llvm.abs as well
1242 WorkList.push_back(
1243 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1244 [[fallthrough]];
1245 case Intrinsic::uadd_sat:
1246 case Intrinsic::usub_sat:
1247 // TODO: Check if it is possible to instead only added the min/max facts
1248 // when simplifying uses of the min/max intrinsics.
1249 if (!isGuaranteedNotToBePoison(&I))
1250 break;
1251 [[fallthrough]];
1252 case Intrinsic::abs:
1253 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I));
1254 break;
1255 }
1256
1257 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
1258 }
1259
1260 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) {
1261 for (auto &Case : Switch->cases()) {
1262 BasicBlock *Succ = Case.getCaseSuccessor();
1263 Value *V = Case.getCaseValue();
1264 if (!canAddSuccessor(BB, Succ))
1265 continue;
1266 WorkList.emplace_back(FactOrCheck::getConditionFact(
1267 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V));
1268 }
1269 return;
1270 }
1271
1272 auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
1273 if (!Br || !Br->isConditional())
1274 return;
1275
1276 Value *Cond = Br->getCondition();
1277
1278 // If the condition is a chain of ORs/AND and the successor only has the
1279 // current block as predecessor, queue conditions for the successor.
1280 Value *Op0, *Op1;
1281 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
1282 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1283 bool IsOr = match(Cond, m_LogicalOr());
1284 bool IsAnd = match(Cond, m_LogicalAnd());
1285 // If there's a select that matches both AND and OR, we need to commit to
1286 // one of the options. Arbitrarily pick OR.
1287 if (IsOr && IsAnd)
1288 IsAnd = false;
1289
1290 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
1291 if (canAddSuccessor(BB, Successor)) {
1292 SmallVector<Value *> CondWorkList;
1293 SmallPtrSet<Value *, 8> SeenCond;
1294 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
1295 if (SeenCond.insert(V).second)
1296 CondWorkList.push_back(V);
1297 };
1298 QueueValue(Op1);
1299 QueueValue(Op0);
1300 while (!CondWorkList.empty()) {
1301 Value *Cur = CondWorkList.pop_back_val();
1302 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
1303 WorkList.emplace_back(FactOrCheck::getConditionFact(
1304 DT.getNode(Successor),
1305 IsOr ? Cmp->getInverseCmpPredicate() : Cmp->getCmpPredicate(),
1306 Cmp->getOperand(0), Cmp->getOperand(1)));
1307 continue;
1308 }
1309 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
1310 QueueValue(Op1);
1311 QueueValue(Op0);
1312 continue;
1313 }
1314 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1315 QueueValue(Op1);
1316 QueueValue(Op0);
1317 continue;
1318 }
1319 }
1320 }
1321 return;
1322 }
1323
1324 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
1325 if (!CmpI)
1326 return;
1327 if (canAddSuccessor(BB, Br->getSuccessor(0)))
1328 WorkList.emplace_back(FactOrCheck::getConditionFact(
1329 DT.getNode(Br->getSuccessor(0)), CmpI->getCmpPredicate(),
1330 CmpI->getOperand(0), CmpI->getOperand(1)));
1331 if (canAddSuccessor(BB, Br->getSuccessor(1)))
1332 WorkList.emplace_back(FactOrCheck::getConditionFact(
1333 DT.getNode(Br->getSuccessor(1)), CmpI->getInverseCmpPredicate(),
1334 CmpI->getOperand(0), CmpI->getOperand(1)));
1335}
1336
1337#ifndef NDEBUG
1339 Value *LHS, Value *RHS) {
1340 OS << "icmp " << Pred << ' ';
1341 LHS->printAsOperand(OS, /*PrintType=*/true);
1342 OS << ", ";
1343 RHS->printAsOperand(OS, /*PrintType=*/false);
1344}
1345#endif
1346
1347namespace {
1348/// Helper to keep track of a condition and if it should be treated as negated
1349/// for reproducer construction.
1350/// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a
1351/// placeholder to keep the ReproducerCondStack in sync with DFSInStack.
1352struct ReproducerEntry {
1353 ICmpInst::Predicate Pred;
1354 Value *LHS;
1355 Value *RHS;
1356
1357 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS)
1358 : Pred(Pred), LHS(LHS), RHS(RHS) {}
1359};
1360} // namespace
1361
1362/// Helper function to generate a reproducer function for simplifying \p Cond.
1363/// The reproducer function contains a series of @llvm.assume calls, one for
1364/// each condition in \p Stack. For each condition, the operand instruction are
1365/// cloned until we reach operands that have an entry in \p Value2Index. Those
1366/// will then be added as function arguments. \p DT is used to order cloned
1367/// instructions. The reproducer function will get added to \p M, if it is
1368/// non-null. Otherwise no reproducer function is generated.
1371 ConstraintInfo &Info, DominatorTree &DT) {
1372 if (!M)
1373 return;
1374
1375 LLVMContext &Ctx = Cond->getContext();
1376
1377 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
1378
1379 ValueToValueMapTy Old2New;
1382 // Traverse Cond and its operands recursively until we reach a value that's in
1383 // Value2Index or not an instruction, or not a operation that
1384 // ConstraintElimination can decompose. Such values will be considered as
1385 // external inputs to the reproducer, they are collected and added as function
1386 // arguments later.
1387 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1388 auto &Value2Index = Info.getValue2Index(IsSigned);
1389 SmallVector<Value *, 4> WorkList(Ops);
1390 while (!WorkList.empty()) {
1391 Value *V = WorkList.pop_back_val();
1392 if (!Seen.insert(V).second)
1393 continue;
1394 if (Old2New.find(V) != Old2New.end())
1395 continue;
1396 if (isa<Constant>(V))
1397 continue;
1398
1399 auto *I = dyn_cast<Instruction>(V);
1400 if (Value2Index.contains(V) || !I ||
1402 Old2New[V] = V;
1403 Args.push_back(V);
1404 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n");
1405 } else {
1406 append_range(WorkList, I->operands());
1407 }
1408 }
1409 };
1410
1411 for (auto &Entry : Stack)
1412 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE)
1413 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred));
1414 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate()));
1415
1416 SmallVector<Type *> ParamTys;
1417 for (auto *P : Args)
1418 ParamTys.push_back(P->getType());
1419
1420 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
1421 /*isVarArg=*/false);
1423 Cond->getModule()->getName() +
1424 Cond->getFunction()->getName() + "repro",
1425 M);
1426 // Add arguments to the reproducer function for each external value collected.
1427 for (unsigned I = 0; I < Args.size(); ++I) {
1428 F->getArg(I)->setName(Args[I]->getName());
1429 Old2New[Args[I]] = F->getArg(I);
1430 }
1431
1432 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
1433 IRBuilder<> Builder(Entry);
1434 Builder.CreateRet(Builder.getTrue());
1435 Builder.SetInsertPoint(Entry->getTerminator());
1436
1437 // Clone instructions in \p Ops and their operands recursively until reaching
1438 // an value in Value2Index (external input to the reproducer). Update Old2New
1439 // mapping for the original and cloned instructions. Sort instructions to
1440 // clone by dominance, then insert the cloned instructions in the function.
1441 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1442 SmallVector<Value *, 4> WorkList(Ops);
1444 auto &Value2Index = Info.getValue2Index(IsSigned);
1445 while (!WorkList.empty()) {
1446 Value *V = WorkList.pop_back_val();
1447 if (Old2New.find(V) != Old2New.end())
1448 continue;
1449
1450 auto *I = dyn_cast<Instruction>(V);
1451 if (!Value2Index.contains(V) && I) {
1452 Old2New[V] = nullptr;
1453 ToClone.push_back(I);
1454 append_range(WorkList, I->operands());
1455 }
1456 }
1457
1458 sort(ToClone,
1459 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
1460 for (Instruction *I : ToClone) {
1461 Instruction *Cloned = I->clone();
1462 Old2New[I] = Cloned;
1463 Old2New[I]->setName(I->getName());
1464 Cloned->insertBefore(Builder.GetInsertPoint());
1466 Cloned->setDebugLoc({});
1467 }
1468 };
1469
1470 // Materialize the assumptions for the reproducer using the entries in Stack.
1471 // That is, first clone the operands of the condition recursively until we
1472 // reach an external input to the reproducer and add them to the reproducer
1473 // function. Then add an ICmp for the condition (with the inverse predicate if
1474 // the entry is negated) and an assert using the ICmp.
1475 for (auto &Entry : Stack) {
1476 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE)
1477 continue;
1478
1479 LLVM_DEBUG(dbgs() << " Materializing assumption ";
1480 dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS);
1481 dbgs() << "\n");
1482 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred));
1483
1484 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS);
1485 Builder.CreateAssumption(Cmp);
1486 }
1487
1488 // Finally, clone the condition to reproduce and remap instruction operands in
1489 // the reproducer using Old2New.
1490 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
1491 Entry->getTerminator()->setOperand(0, Cond);
1492 remapInstructionsInBlocks({Entry}, Old2New);
1493
1494 assert(!verifyFunction(*F, &dbgs()));
1495}
1496
1497 static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A,
1498 Value *B, Instruction *CheckInst,
1499 ConstraintInfo &Info) {
1500 LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n");
1501
1502 auto R = Info.getConstraintForSolving(Pred, A, B);
1503 if (R.empty() || !R.isValid(Info)) {
1504 LLVM_DEBUG(dbgs() << " failed to decompose condition\n");
1505 return std::nullopt;
1506 }
1507
1508 auto &CSToUse = Info.getCS(R.IsSigned);
1509
1510 // If there was extra information collected during decomposition, apply
1511 // it now and remove it immediately once we are done with reasoning
1512 // about the constraint.
1513 for (auto &Row : R.ExtraInfo)
1514 CSToUse.addVariableRow(Row);
1515 auto InfoRestorer = make_scope_exit([&]() {
1516 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
1517 CSToUse.popLastConstraint();
1518 });
1519
1520 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) {
1521 if (!DebugCounter::shouldExecute(EliminatedCounter))
1522 return std::nullopt;
1523
1524 LLVM_DEBUG({
1525 dbgs() << "Condition ";
1527 dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred),
1528 A, B);
1529 dbgs() << " implied by dominating constraints\n";
1530 CSToUse.dump();
1531 });
1532 return ImpliedCondition;
1533 }
1534
1535 return std::nullopt;
1536}
1537
1539 ICmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut,
1540 Instruction *ContextInst, Module *ReproducerModule,
1541 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT,
1543 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
1544 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
1545 Constant *ConstantC = ConstantInt::getBool(
1546 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
1547 bool Changed = false;
1548 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, ContextInst,
1549 &Changed](Use &U) {
1550 auto *UserI = getContextInstForUse(U);
1551 auto *DTN = DT.getNode(UserI->getParent());
1552 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
1553 return false;
1554 if (UserI->getParent() == ContextInst->getParent() &&
1555 UserI->comesBefore(ContextInst))
1556 return false;
1557
1558 // Conditions in an assume trivially simplify to true. Skip uses
1559 // in assume calls to not destroy the available information.
1560 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1561 bool ShouldReplace = !II || II->getIntrinsicID() != Intrinsic::assume;
1562 Changed |= ShouldReplace;
1563 return ShouldReplace;
1564 });
1565 NumCondsRemoved++;
1566
1567 // Update the debug value records that satisfy the same condition used
1568 // in replaceUsesWithIf.
1570 findDbgUsers(Cmp, DVRUsers);
1571
1572 for (auto *DVR : DVRUsers) {
1573 auto *DTN = DT.getNode(DVR->getParent());
1574 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
1575 continue;
1576
1577 auto *MarkedI = DVR->getInstruction();
1578 if (MarkedI->getParent() == ContextInst->getParent() &&
1579 MarkedI->comesBefore(ContextInst))
1580 continue;
1581
1582 DVR->replaceVariableLocationOp(Cmp, ConstantC);
1583 }
1584
1585 if (Cmp->use_empty())
1586 ToRemove.push_back(Cmp);
1587
1588 return Changed;
1589 };
1590
1591 if (auto ImpliedCondition =
1592 checkCondition(Cmp->getPredicate(), Cmp->getOperand(0),
1593 Cmp->getOperand(1), Cmp, Info))
1594 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
1595
1596 // When the predicate is samesign and unsigned, we can also make use of the
1597 // signed predicate information.
1598 if (Cmp->hasSameSign() && Cmp->isUnsigned())
1599 if (auto ImpliedCondition =
1600 checkCondition(Cmp->getSignedPredicate(), Cmp->getOperand(0),
1601 Cmp->getOperand(1), Cmp, Info))
1602 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
1603
1604 return false;
1605}
1606
1607 static bool checkAndReplaceMinMax(MinMaxIntrinsic *MinMax, ConstraintInfo &Info,
1609 auto ReplaceMinMaxWithOperand = [&](MinMaxIntrinsic *MinMax, bool UseLHS) {
1610 // TODO: generate reproducer for min/max.
1611 MinMax->replaceAllUsesWith(MinMax->getOperand(UseLHS ? 0 : 1));
1612 ToRemove.push_back(MinMax);
1613 return true;
1614 };
1615
1616 ICmpInst::Predicate Pred =
1617 ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1618 if (auto ImpliedCondition = checkCondition(
1619 Pred, MinMax->getOperand(0), MinMax->getOperand(1), MinMax, Info))
1620 return ReplaceMinMaxWithOperand(MinMax, *ImpliedCondition);
1621 if (auto ImpliedCondition = checkCondition(
1622 Pred, MinMax->getOperand(1), MinMax->getOperand(0), MinMax, Info))
1623 return ReplaceMinMaxWithOperand(MinMax, !*ImpliedCondition);
1624 return false;
1625}
1626
1627 static bool checkAndReplaceCmp(CmpIntrinsic *I, ConstraintInfo &Info,
1629 Value *LHS = I->getOperand(0);
1630 Value *RHS = I->getOperand(1);
1631 if (checkCondition(I->getGTPredicate(), LHS, RHS, I, Info).value_or(false)) {
1632 I->replaceAllUsesWith(ConstantInt::get(I->getType(), 1));
1633 ToRemove.push_back(I);
1634 return true;
1635 }
1636 if (checkCondition(I->getLTPredicate(), LHS, RHS, I, Info).value_or(false)) {
1637 I->replaceAllUsesWith(ConstantInt::getSigned(I->getType(), -1));
1638 ToRemove.push_back(I);
1639 return true;
1640 }
1641 if (checkCondition(ICmpInst::ICMP_EQ, LHS, RHS, I, Info).value_or(false)) {
1642 I->replaceAllUsesWith(ConstantInt::get(I->getType(), 0));
1643 ToRemove.push_back(I);
1644 return true;
1645 }
1646 return false;
1647}
1648
1649static void
1650 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
1651 Module *ReproducerModule,
1652 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1653 SmallVectorImpl<StackEntry> &DFSInStack) {
1654 Info.popLastConstraint(E.IsSigned);
1655 // Remove variables in the system that went out of scope.
1656 auto &Mapping = Info.getValue2Index(E.IsSigned);
1657 for (Value *V : E.ValuesToRelease)
1658 Mapping.erase(V);
1659 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1660 DFSInStack.pop_back();
1661 if (ReproducerModule)
1662 ReproducerCondStack.pop_back();
1663}
1664
1665/// Check if either the first condition of an AND or OR is implied by the
1666/// (negated in case of OR) second condition or vice versa.
1668 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule,
1669 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1670 SmallVectorImpl<StackEntry> &DFSInStack,
1672 Instruction *JoinOp = CB.getContextInst();
1673 if (JoinOp->use_empty())
1674 return false;
1675
1676 CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify());
1677 unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0;
1678
1679 // Don't try to simplify the first condition of a select by the second, as
1680 // this may make the select more poisonous than the original one.
1681 // TODO: check if the first operand may be poison.
1682 if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp))
1683 return false;
1684
1685 unsigned OldSize = DFSInStack.size();
1686 auto InfoRestorer = make_scope_exit([&]() {
1687 // Remove entries again.
1688 while (OldSize < DFSInStack.size()) {
1689 StackEntry E = DFSInStack.back();
1690 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack,
1691 DFSInStack);
1692 }
1693 });
1694 bool IsOr = match(JoinOp, m_LogicalOr());
1695 SmallVector<Value *, 4> Worklist({JoinOp->getOperand(OtherOpIdx)});
1696 // Do a traversal of the AND/OR tree to add facts from leaf compares.
1697 while (!Worklist.empty()) {
1698 Value *Val = Worklist.pop_back_val();
1699 Value *LHS, *RHS;
1700 CmpPredicate Pred;
1701 if (match(Val, m_ICmp(Pred, m_Value(LHS), m_Value(RHS)))) {
1702 // For OR, check if the negated condition implies CmpToCheck.
1703 if (IsOr)
1704 Pred = CmpInst::getInversePredicate(Pred);
1705 // Optimistically add fact from the other compares in the AND/OR.
1706 Info.addFact(Pred, LHS, RHS, CB.NumIn, CB.NumOut, DFSInStack);
1707 continue;
1708 }
1709 if (IsOr ? match(Val, m_LogicalOr(m_Value(LHS), m_Value(RHS)))
1710 : match(Val, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) {
1711 Worklist.push_back(LHS);
1712 Worklist.push_back(RHS);
1713 }
1714 }
1715 if (OldSize == DFSInStack.size())
1716 return false;
1717
1718 // Check if the second condition can be simplified now.
1719 if (auto ImpliedCondition =
1720 checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0),
1721 CmpToCheck->getOperand(1), CmpToCheck, Info)) {
1722 if (IsOr == *ImpliedCondition)
1723 JoinOp->replaceAllUsesWith(
1724 ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1725 else
1726 JoinOp->replaceAllUsesWith(JoinOp->getOperand(OtherOpIdx));
1727 ToRemove.push_back(JoinOp);
1728 return true;
1729 }
1730
1731 return false;
1732}
1733
1734void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
1735 unsigned NumIn, unsigned NumOut,
1736 SmallVectorImpl<StackEntry> &DFSInStack) {
1737 addFactImpl(Pred, A, B, NumIn, NumOut, DFSInStack, false);
1738 // If the Pred is eq/ne, also add the fact to signed system.
1739 if (CmpInst::isEquality(Pred))
1740 addFactImpl(Pred, A, B, NumIn, NumOut, DFSInStack, true);
1741}
1742
1743void ConstraintInfo::addFactImpl(CmpInst::Predicate Pred, Value *A, Value *B,
1744 unsigned NumIn, unsigned NumOut,
1745 SmallVectorImpl<StackEntry> &DFSInStack,
1746 bool ForceSignedSystem) {
1747 // If the constraint has a pre-condition, skip the constraint if it does not
1748 // hold.
1749 SmallVector<Value *> NewVariables;
1750 auto R = getConstraint(Pred, A, B, NewVariables, ForceSignedSystem);
1751
1752 // TODO: Support non-equality for facts as well.
1753 if (!R.isValid(*this) || R.isNe())
1754 return;
1755
1756 LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B);
1757 dbgs() << "'\n");
1758 auto &CSToUse = getCS(R.IsSigned);
1759 if (R.Coefficients.empty())
1760 return;
1761
1762 bool Added = CSToUse.addVariableRowFill(R.Coefficients);
1763 if (!Added)
1764 return;
1765
1766 // If R has been added to the system, add the new variables and queue it for
1767 // removal once it goes out-of-scope.
1768 SmallVector<Value *, 2> ValuesToRelease;
1769 auto &Value2Index = getValue2Index(R.IsSigned);
1770 for (Value *V : NewVariables) {
1771 Value2Index.insert({V, Value2Index.size() + 1});
1772 ValuesToRelease.push_back(V);
1773 }
1774
1775 LLVM_DEBUG({
1776 dbgs() << " constraint: ";
1777 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1778 dbgs() << "\n";
1779 });
1780
1781 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1782 std::move(ValuesToRelease));
1783
1784 if (!R.IsSigned) {
1785 for (Value *V : NewVariables) {
1786 ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
1787 false, false, false);
1788 VarPos.Coefficients[Value2Index[V]] = -1;
1789 CSToUse.addVariableRow(VarPos.Coefficients);
1790 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1791 SmallVector<Value *, 2>());
1792 }
1793 }
1794
1795 if (R.isEq()) {
1796 // Also add the inverted constraint for equality constraints.
1797 for (auto &Coeff : R.Coefficients)
1798 Coeff *= -1;
1799 CSToUse.addVariableRowFill(R.Coefficients);
1800
1801 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1802 SmallVector<Value *, 2>());
1803 }
1804}
1805
1808 bool Changed = false;
1809 IRBuilder<> Builder(II->getParent(), II->getIterator());
1810 Value *Sub = nullptr;
1811 for (User *U : make_early_inc_range(II->users())) {
1812 if (match(U, m_ExtractValue<0>(m_Value()))) {
1813 if (!Sub)
1814 Sub = Builder.CreateSub(A, B);
1815 U->replaceAllUsesWith(Sub);
1816 Changed = true;
1817 } else if (match(U, m_ExtractValue<1>(m_Value()))) {
1818 U->replaceAllUsesWith(Builder.getFalse());
1819 Changed = true;
1820 } else
1821 continue;
1822
1823 if (U->use_empty()) {
1824 auto *I = cast<Instruction>(U);
1825 ToRemove.push_back(I);
1826 I->setOperand(0, PoisonValue::get(II->getType()));
1827 Changed = true;
1828 }
1829 }
1830
1831 if (II->use_empty()) {
1832 II->eraseFromParent();
1833 Changed = true;
1834 }
1835 return Changed;
1836}
1837
1838static bool
1841 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1842 ConstraintInfo &Info) {
1843 auto R = Info.getConstraintForSolving(Pred, A, B);
1844 if (R.size() < 2 || !R.isValid(Info))
1845 return false;
1846
1847 auto &CSToUse = Info.getCS(R.IsSigned);
1848 return CSToUse.isConditionImplied(R.Coefficients);
1849 };
1850
1851 bool Changed = false;
1852 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1853 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1854 // can be simplified to a regular sub.
1855 Value *A = II->getArgOperand(0);
1856 Value *B = II->getArgOperand(1);
1857 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1858 !DoesConditionHold(CmpInst::ICMP_SGE, B,
1859 ConstantInt::get(A->getType(), 0), Info))
1860 return false;
1862 }
1863 return Changed;
1864}
1865
1867 ScalarEvolution &SE,
1869 TargetLibraryInfo &TLI) {
1870 bool Changed = false;
1871 DT.updateDFSNumbers();
1872 SmallVector<Value *> FunctionArgs(llvm::make_pointer_range(F.args()));
1873 ConstraintInfo Info(F.getDataLayout(), FunctionArgs);
1874 State S(DT, LI, SE, TLI);
1875 std::unique_ptr<Module> ReproducerModule(
1876 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1877
1878 // First, collect conditions implied by branches and blocks with their
1879 // Dominator DFS in and out numbers.
1880 for (BasicBlock &BB : F) {
1881 if (!DT.getNode(&BB))
1882 continue;
1883 S.addInfoFor(BB);
1884 }
1885
1886 // Next, sort worklist by dominance, so that dominating conditions to check
1887 // and facts come before conditions and facts dominated by them. If a
1888 // condition to check and a fact have the same numbers, conditional facts come
1889 // first. Assume facts and checks are ordered according to their relative
1890 // order in the containing basic block. Also make sure conditions with
1891 // constant operands come before conditions without constant operands. This
1892 // increases the effectiveness of the current signed <-> unsigned fact
1893 // transfer logic.
1894 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1895 auto HasNoConstOp = [](const FactOrCheck &B) {
1896 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0);
1897 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1);
1898 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1);
1899 };
1900 // If both entries have the same In numbers, conditional facts come first.
1901 // Otherwise use the relative order in the basic block.
1902 if (A.NumIn == B.NumIn) {
1903 if (A.isConditionFact() && B.isConditionFact()) {
1904 bool NoConstOpA = HasNoConstOp(A);
1905 bool NoConstOpB = HasNoConstOp(B);
1906 return NoConstOpA < NoConstOpB;
1907 }
1908 if (A.isConditionFact())
1909 return true;
1910 if (B.isConditionFact())
1911 return false;
1912 auto *InstA = A.getContextInst();
1913 auto *InstB = B.getContextInst();
1914 return InstA->comesBefore(InstB);
1915 }
1916 return A.NumIn < B.NumIn;
1917 });
1918
1920
1921 // Finally, process ordered worklist and eliminate implied conditions.
1922 SmallVector<StackEntry, 16> DFSInStack;
1923 SmallVector<ReproducerEntry> ReproducerCondStack;
1924 for (FactOrCheck &CB : S.WorkList) {
1925 // First, pop entries from the stack that are out-of-scope for CB. Remove
1926 // the corresponding entry from the constraint system.
1927 while (!DFSInStack.empty()) {
1928 auto &E = DFSInStack.back();
1929 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1930 << "\n");
1931 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1932 assert(E.NumIn <= CB.NumIn);
1933 if (CB.NumOut <= E.NumOut)
1934 break;
1935 LLVM_DEBUG({
1936 dbgs() << "Removing ";
1937 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1938 Info.getValue2Index(E.IsSigned));
1939 dbgs() << "\n";
1940 });
1941 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
1942 DFSInStack);
1943 }
1944
1945 // For a block, check if any CmpInsts become known based on the current set
1946 // of constraints.
1947 if (CB.isCheck()) {
1948 Instruction *Inst = CB.getInstructionToSimplify();
1949 if (!Inst)
1950 continue;
1951 LLVM_DEBUG(dbgs() << "Processing condition to simplify: " << *Inst
1952 << "\n");
1953 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) {
1955 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) {
1957 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(),
1958 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove);
1959 if (!Simplified &&
1960 match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) {
1962 CB, Info, ReproducerModule.get(), ReproducerCondStack, DFSInStack,
1963 ToRemove);
1964 }
1966 } else if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Inst)) {
1968 } else if (auto *CmpIntr = dyn_cast<CmpIntrinsic>(Inst)) {
1970 }
1971 continue;
1972 }
1973
1974 auto AddFact = [&](CmpPredicate Pred, Value *A, Value *B) {
1975 LLVM_DEBUG(dbgs() << "Processing fact to add to the system: ";
1976 dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n");
1977 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1978 LLVM_DEBUG(
1979 dbgs()
1980 << "Skip adding constraint because system has too many rows.\n");
1981 return;
1982 }
1983
1984 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1985 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1986 ReproducerCondStack.emplace_back(Pred, A, B);
1987
1988 if (ICmpInst::isRelational(Pred)) {
1989 // If samesign is present on the ICmp, simply flip the sign of the
1990 // predicate, transferring the information from the signed system to the
1991 // unsigned system, and viceversa.
1992 if (Pred.hasSameSign())
1994 CB.NumIn, CB.NumOut, DFSInStack);
1995 else
1996 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut,
1997 DFSInStack);
1998 }
1999
2000 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
2001 // Add dummy entries to ReproducerCondStack to keep it in sync with
2002 // DFSInStack.
2003 for (unsigned I = 0,
2004 E = (DFSInStack.size() - ReproducerCondStack.size());
2005 I < E; ++I) {
2006 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE,
2007 nullptr, nullptr);
2008 }
2009 }
2010 };
2011
2012 CmpPredicate Pred;
2013 if (!CB.isConditionFact()) {
2014 Value *X;
2015 if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) {
2016 // If is_int_min_poison is true then we may assume llvm.abs >= 0.
2017 if (cast<ConstantInt>(CB.Inst->getOperand(1))->isOne())
2018 AddFact(CmpInst::ICMP_SGE, CB.Inst,
2019 ConstantInt::get(CB.Inst->getType(), 0));
2020 AddFact(CmpInst::ICMP_SGE, CB.Inst, X);
2021 continue;
2022 }
2023
2024 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) {
2025 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
2026 AddFact(Pred, MinMax, MinMax->getLHS());
2027 AddFact(Pred, MinMax, MinMax->getRHS());
2028 continue;
2029 }
2030 if (auto *USatI = dyn_cast<SaturatingInst>(CB.Inst)) {
2031 switch (USatI->getIntrinsicID()) {
2032 default:
2033 llvm_unreachable("Unexpected intrinsic.");
2034 case Intrinsic::uadd_sat:
2035 AddFact(ICmpInst::ICMP_UGE, USatI, USatI->getLHS());
2036 AddFact(ICmpInst::ICMP_UGE, USatI, USatI->getRHS());
2037 break;
2038 case Intrinsic::usub_sat:
2039 AddFact(ICmpInst::ICMP_ULE, USatI, USatI->getLHS());
2040 break;
2041 }
2042 continue;
2043 }
2044
2045 auto &DL = F.getDataLayout();
2046 auto AddFactsAboutIndices = [&](Value *Ptr, Type *AccessType) {
2047 CmpPredicate Pred;
2048 Value *A, *B;
2051 DL.getTypeStoreSize(AccessType).getFixedValue(), Pred, A, B, DL,
2052 TLI))
2053 AddFact(Pred, A, B);
2054 };
2055
2056 if (auto *LI = dyn_cast<LoadInst>(CB.Inst)) {
2057 AddFactsAboutIndices(LI->getPointerOperand(), LI->getAccessType());
2058 continue;
2059 }
2060 if (auto *SI = dyn_cast<StoreInst>(CB.Inst)) {
2061 AddFactsAboutIndices(SI->getPointerOperand(), SI->getAccessType());
2062 continue;
2063 }
2064 }
2065
2066 Value *A = nullptr, *B = nullptr;
2067 if (CB.isConditionFact()) {
2068 Pred = CB.Cond.Pred;
2069 A = CB.Cond.Op0;
2070 B = CB.Cond.Op1;
2071 if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE &&
2072 !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) {
2073 LLVM_DEBUG({
2074 dbgs() << "Not adding fact ";
2075 dumpUnpackedICmp(dbgs(), Pred, A, B);
2076 dbgs() << " because precondition ";
2077 dumpUnpackedICmp(dbgs(), CB.DoesHold.Pred, CB.DoesHold.Op0,
2078 CB.DoesHold.Op1);
2079 dbgs() << " does not hold.\n";
2080 });
2081 continue;
2082 }
2083 } else {
2084 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>(
2085 m_ICmp(Pred, m_Value(A), m_Value(B))));
2086 (void)Matched;
2087 assert(Matched && "Must have an assume intrinsic with a icmp operand");
2088 }
2089 AddFact(Pred, A, B);
2090 }
2091
2092 if (ReproducerModule && !ReproducerModule->functions().empty()) {
2093 std::string S;
2094 raw_string_ostream StringS(S);
2095 ReproducerModule->print(StringS, nullptr);
2096 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
2097 Rem << ore::NV("module") << S;
2098 ORE.emit(Rem);
2099 }
2100
2101#ifndef NDEBUG
2102 unsigned SignedEntries =
2103 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
2104 assert(Info.getCS(false).size() - FunctionArgs.size() ==
2105 DFSInStack.size() - SignedEntries &&
2106 "updates to CS and DFSInStack are out of sync");
2107 assert(Info.getCS(true).size() == SignedEntries &&
2108 "updates to CS and DFSInStack are out of sync");
2109#endif
2110
2111 for (Instruction *I : ToRemove)
2112 I->eraseFromParent();
2113 return Changed;
2114}
2115
2118 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2119 auto &LI = AM.getResult<LoopAnalysis>(F);
2120 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
2122 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
2123 if (!eliminateConstraints(F, DT, LI, SE, ORE, TLI))
2124 return PreservedAnalyses::all();
2125
2128 PA.preserve<LoopAnalysis>();
2131 return PA;
2132}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
ReachingDefInfo InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
A
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
E
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
B
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
std::pair< ICmpInst *, unsigned > ConditionTy
static int64_t MaxConstraintValue
static int64_t MinSignedConstraintValue
static Instruction * getContextInstForUse(Use &U)
static Decomposition decomposeGEP(GEPOperator &GEP, SmallVectorImpl< ConditionTy > &Preconditions, bool IsSigned, const DataLayout &DL)
static bool canUseSExt(ConstantInt *CI)
static void dumpConstraint(ArrayRef< int64_t > C, const DenseMap< Value *, unsigned > &Value2Index)
static void removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, Module *ReproducerModule, SmallVectorImpl< ReproducerEntry > &ReproducerCondStack, SmallVectorImpl< StackEntry > &DFSInStack)
static std::optional< bool > checkCondition(CmpInst::Predicate Pred, Value *A, Value *B, Instruction *CheckInst, ConstraintInfo &Info)
static cl::opt< unsigned > MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, cl::desc("Maximum number of rows to keep in constraint system"))
static cl::opt< bool > DumpReproducers("constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, cl::desc("Dump IR to reproduce successful transformations."))
static bool checkOrAndOpImpliedByOther(FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, SmallVectorImpl< ReproducerEntry > &ReproducerCondStack, SmallVectorImpl< StackEntry > &DFSInStack, SmallVectorImpl< Instruction * > &ToRemove)
Check if either the first condition of an AND or OR is implied by the (negated in case of OR) second ...
static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE, OptimizationRemarkEmitter &ORE, TargetLibraryInfo &TLI)
static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL)
static bool checkAndReplaceMinMax(MinMaxIntrinsic *MinMax, ConstraintInfo &Info, SmallVectorImpl< Instruction * > &ToRemove)
static void generateReproducer(CmpInst *Cond, Module *M, ArrayRef< ReproducerEntry > Stack, ConstraintInfo &Info, DominatorTree &DT)
Helper function to generate a reproducer function for simplifying Cond.
static bool checkAndReplaceCondition(ICmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, Instruction *ContextInst, Module *ReproducerModule, ArrayRef< ReproducerEntry > ReproducerCondStack, DominatorTree &DT, SmallVectorImpl< Instruction * > &ToRemove)
static bool getConstraintFromMemoryAccess(GetElementPtrInst &GEP, uint64_t AccessSize, CmpPredicate &Pred, Value *&A, Value *&B, const DataLayout &DL, const TargetLibraryInfo &TLI)
static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred, Value *LHS, Value *RHS)
static Decomposition decompose(Value *V, SmallVectorImpl< ConditionTy > &Preconditions, bool IsSigned, const DataLayout &DL)
static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, SmallVectorImpl< Instruction * > &ToRemove)
static bool tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, SmallVectorImpl< Instruction * > &ToRemove)
static bool checkAndReplaceCmp(CmpIntrinsic *I, ConstraintInfo &Info, SmallVectorImpl< Instruction * > &ToRemove)
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
Definition DebugCounter.h:197
#define DEBUG_TYPE
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
Module.h This file contains the declarations for the Module class.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
F
#define F(x, y, z)
Definition MD5.cpp:55
I
#define I(x, y, z)
Definition MD5.cpp:58
Machine Check Debug Module
uint64_t IntrinsicInst * II
P
#define P(N)
if(PassOpts->AAPipeline)
static StringRef getName(Value *V)
const SmallVectorImpl< MachineOperand > & Cond
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
This file contains some templates that are useful if you are working with the STL at all.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
X
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
@ Ptr
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition APInt.h:78
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition APInt.h:1202
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:330
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition APInt.h:476
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition APInt.h:1131
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:390
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition PassManager.h:412
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
LLVM Basic Block Representation.
Definition BasicBlock.h:62
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition BasicBlock.h:206
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
Definition BasicBlock.cpp:252
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
This class is the base class for the comparison instructions.
Definition InstrTypes.h:664
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:982
bool isEquality() const
Determine if this is an equals/not equals predicate.
Definition InstrTypes.h:915
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ BAD_ICMP_PREDICATE
Definition InstrTypes.h:709
@ ICMP_SLT
signed less than
Definition InstrTypes.h:705
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:706
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:700
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_EQ
equal
Definition InstrTypes.h:697
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:704
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
bool isSigned() const
Definition InstrTypes.h:930
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Definition InstrTypes.h:871
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
Predicate getPredicate() const
Return the predicate for this instruction.
Definition InstrTypes.h:765
This class represents a ucmp/scmp intrinsic.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
Definition CmpPredicate.h:23
bool hasSameSign() const
Query samesign information, for optimizations.
Definition CmpPredicate.h:43
This is the shared class of boolean and integer constants.
Definition Constants.h:87
bool isNegative() const
Definition Constants.h:209
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition Constants.h:169
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
Definition Constants.cpp:885
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
Definition Constants.cpp:420
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition Constants.cpp:373
PreservedAnalyses run(Function &F, FunctionAnalysisManager &)
static SmallVector< int64_t, 8 > negate(SmallVector< int64_t, 8 > R)
LLVM_ABI bool isConditionImplied(SmallVector< int64_t, 8 > R) const
static SmallVector< int64_t, 8 > toStrictLessThan(SmallVector< int64_t, 8 > R)
Converts the given vector to form a strict less than inequality.
static SmallVector< int64_t, 8 > negateOrEqual(SmallVector< int64_t, 8 > R)
Multiplies each coefficient in the given vector by -1.
bool addVariableRowFill(ArrayRef< int64_t > R)
LLVM_ABI void dump() const
Print the constraints in the system.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
static bool shouldExecute(unsigned CounterName)
Definition DebugCounter.h:88
bool erase(const KeyT &Val)
Definition DenseMap.h:322
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:169
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:233
unsigned getDFSNumIn() const
getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes in the dominator tree.
unsigned getDFSNumOut() const
Analysis pass which computes a DominatorTree.
Definition Dominators.h:284
void updateDFSNumbers() const
updateDFSNumbers - Assign In and Out numbers to the nodes while walking dominator tree in dfs order.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition Dominators.cpp:135
static LLVM_ABI FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Definition Function.h:166
static GEPNoWrapFlags none()
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition Instructions.h:950
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
This instruction compares its operands according to the predicate given to the constructor.
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
LLVM_ABI void insertBefore(InstListType::iterator InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified position.
LLVM_ABI void dropUnknownNonDebugMetadata(ArrayRef< unsigned > KnownIDs={})
Drop all unknown metadata except for debug locations.
Definition Metadata.cpp:1701
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition Instruction.h:510
A wrapper class for inspecting calls to intrinsic functions.
Definition IntrinsicInst.h:49
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
size_type size() const
Definition MapVector.h:56
This class represents min/max intrinsics.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
The optimization diagnostic interface.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition Constants.cpp:1888
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
LLVM_ABI APInt getConstantMultiple(const SCEV *S, const Instruction *CtxI=nullptr)
Returns the max constant multiple of S.
LLVM_ABI std::optional< MonotonicPredicateType > getMonotonicPredicateType(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred)
If, for all loop invariant X, the predicate "LHS `Pred` X" is monotonically increasing or decreasing,...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition SmallPtrSet.h:389
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition SmallPtrSet.h:527
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition SmallVector.h:574
reference emplace_back(ArgTypes &&... Args)
Definition SmallVector.h:944
void push_back(const T &Elt)
Definition SmallVector.h:417
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition SmallVector.h:1203
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
Definition User.h:44
Value * getOperand(unsigned i) const
Definition User.h:232
iterator find(const KeyT &Val)
Definition ValueMap.h:160
iterator end()
Definition ValueMap.h:139
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
LLVM_ABI const Value * stripPointerCastsSameRepresentation() const
Strip off pointer casts, all-zero GEPs and address space casts but ensures the representation of the ...
Definition Value.cpp:709
bool use_empty() const
Definition Value.h:346
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:172
const ParentTy * getParent() const
Definition ilist_node.h:34
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ Constant
Definition ISDOpcodes.h:86
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
Definition PatternMatch.h:49
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition PatternMatch.h:181
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
NoWrapTrunc_match< OpTy, TruncInst::NoSignedWrap > m_NSWTrunc(const OpTy &Op)
Matches trunc nsw.
NNegZExt_match< OpTy > m_NNegZExt(const OpTy &Op)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition PatternMatch.h:105
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition PatternMatch.h:624
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
initializer< Ty > init(const Ty &Val)
Definition CommandLine.h:445
@ Switch
The "resume-switch" lowering, where there are separate resume and destroy functions that are shared b...
Definition CoroShape.h:31
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< UseNode * > Use
Definition RDFGraph.h:385
bool empty() const
Definition BasicBlock.h:101
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
Definition AddressRanges.h:18
@ Offset
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
std::enable_if_t< std::is_signed_v< T >, T > MulOverflow(T X, T Y, T &Result)
Multiply two signed integers, computing the two's complement truncated result, returning true if an o...
Definition MathExtras.h:753
void stable_sort(R &&Range)
Definition STLExtras.h:2058
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1655
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition ScopeExit.h:59
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
Definition Verifier.cpp:7603
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
LLVM_ABI std::optional< TypeSize > getBaseObjectSize(const Value *Ptr, const DataLayout &DL, const TargetLibraryInfo *TLI, ObjectSizeOpts Opts={})
Like getObjectSize(), but only returns the size of base objects (like allocas, global variables and a...
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
Definition STLExtras.h:1150
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
DomTreeNodeBase< BasicBlock > DomTreeNode
Definition Dominators.h:95
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
constexpr unsigned MaxAnalysisRecursionDepth
Definition ValueTracking.h:47
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1622
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
Definition SmallVector.h:1129
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
@ Other
Any other memory.
Definition ModRef.h:68
@ Sub
Subtraction of integers.
Definition IVDescriptors.h:38
LLVM_ABI void remapInstructionsInBlocks(ArrayRef< BasicBlock * > Blocks, ValueToValueMapTy &VMap)
Remaps instructions in Blocks using the mapping in VMap.
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
Definition BitmaskEnum.h:220
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1867
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition STLExtras.h:1961
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition iterator.h:363
std::enable_if_t< std::is_signed_v< T >, T > AddOverflow(T X, T Y, T &Result)
Add two signed integers, computing the two's complement truncated result, returning true if overflow ...
Definition MathExtras.h:701
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
Definition PassManager.h:564
std::enable_if_t< std::is_signed_v< T >, T > SubOverflow(T X, T Y, T &Result)
Subtract two signed integers, computing the two's complement truncated result, returning true if an o...
Definition MathExtras.h:727
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI void findDbgUsers(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the debug info records describing a value.
Definition DebugInfo.cpp:130
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
N
#define N
Various options to control the behavior of getObjectSize.
bool NullIsUnknownSize
If this is true, null pointers in address space 0 will be treated as though they can't be evaluated.
bool RoundToAlign
Whether to round the result up to the alignment of allocas, byval arguments, and global variables.
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:257

Generated on for LLVM by doxygen 1.14.0

AltStyle によって変換されたページ (->オリジナル) /