shake-0.7: Build system library, like Make, but more accurate dependencies.

Safe HaskellNone

Development.Shake.Classes

Description

This module reexports the six necessary type classes that every Rule type must support. You can use this module to define new rules without depending on the binary, deepseq and hashable packages.

Synopsis

Documentation

class Show a where

Conversion of values to readable String s.

Minimal complete definition: showsPrec or show .

Derived instances of Show have the following properties, which are compatible with derived instances of Read :

  • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
  • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
  • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
  • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.

For example, given the declarations

 infixr 5 :^:
 data Tree a = Leaf a | Tree a :^: Tree a

the derived instance of Show is equivalent to

 instance (Show a) => Show (Tree a) where
 showsPrec d (Leaf m) = showParen (d > app_prec) $
 showString "Leaf " . showsPrec (app_prec+1) m
 where app_prec = 10
 showsPrec d (u :^: v) = showParen (d > up_prec) $
 showsPrec (up_prec+1) u .
 showString " :^: " .
 showsPrec (up_prec+1) v
 where up_prec = 5

Note that right-associativity of :^: is ignored. For example,

  • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

Methods

showsPrec

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> a

the value to be converted to a String

-> ShowS

Convert a value to a readable String .

showsPrec should satisfy the law

 showsPrec d x r ++ s == showsPrec d x (r ++ s)

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec , and delivers the value that showsPrec started with.

show :: a -> String

A specialised variant of showsPrec , using precedence context zero, and returning an ordinary String .

showList :: [a] -> ShowS

The method showList is provided to allow the programmer to give a specialised way of showing lists of values. For example, this is used by the predefined Show instance of the Char type, where values of type String should be shown in double quotes, rather than between square brackets.

Instances

Show ()
Show HandleType
Show Padding
Show DateFormatSpec
Show ShakeException
Show Lock
Show Value
Show Key
Show Id
Show FileTime
Show Regex
Show Lexeme
Show ShakeProgress
Show StepKey
Show Pending
Show Step
Show GetDirectoryA
Show GetDirectoryQ
Show DoesDirectoryExistA
Show DoesDirectoryExistQ
Show DoesFileExistA
Show DoesFileExistQ
Show FileA
Show FileQ
Show AlwaysRerunA
Show AlwaysRerunQ
Show FilesA
Show FilesQ
Show a => Show [a]
(Integral a, Show a) => Show (Ratio a)
Show a => Show (Complex a)
Show a => Show (Dual a)
Show a => Show (Sum a)
Show a => Show (Product a)
Show a => Show (First a)
Show a => Show (Last a)
Show a => Show (Maybe a)
Show a => Show (Tree a)
Show a => Show (Seq a)
Show a => Show (ViewL a)
Show a => Show (ViewR a)
Show a => Show (IntMap a)
Show a => Show (Set a)
Show a => Show (HashSet a)
Show (Barrier a)
Show (Var a)
Show answer => Show (OracleA answer)
Show question => Show (OracleQ question)
(Show a, Show b) => Show (Either a b)
(Show a, Show b) => Show (a, b)
(Ix ix, Show ix, Show e, IArray UArray e) => Show (UArray ix e)
(Ix a, Show a, Show b) => Show (Array a b)
(Show k, Show a) => Show (Map k a)
(Show k, Show v) => Show (HashMap k v)
(Show a, Show b, Show c) => Show (a, b, c)
(Show a, Show b, Show c, Show d) => Show (a, b, c, d)
(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e)
(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

class Typeable a where

The class Typeable allows a concrete representation of a type to be calculated.

Methods

typeOf :: a -> TypeRep

Takes a value of type a and returns a concrete representation of that type. The value of the argument should be ignored by any instance of Typeable , so that it is safe to pass undefined as the argument.

Instances

Typeable Handle__
Typeable ShakeException
Typeable FileTime
Typeable ShakeProgress
Typeable StepKey
Typeable Step
Typeable GetDirectoryA
Typeable GetDirectoryQ
Typeable DoesDirectoryExistA
Typeable DoesDirectoryExistQ
Typeable DoesFileExistA
Typeable DoesFileExistQ
Typeable FileA
Typeable FileQ
Typeable AlwaysRerunA
Typeable AlwaysRerunQ
Typeable FilesA
Typeable FilesQ
(Typeable1 s, Typeable a) => Typeable (s a)

One Typeable instance for all Typeable1 instances

class Eq a where

The Eq class defines equality (== ) and inequality (/= ). All the basic datatypes exported by the Prelude are instances of Eq , and Eq may be derived for any datatype whose constituents are also instances of Eq .

Minimal complete definition: either == or /= .

Methods

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

Instances

Eq ()
Eq Constr

Equality of constructors

Eq Fd
Eq Witness
Eq Value
Eq Key
Eq Id
Eq FileTime
Eq Lexeme
Eq BS
Eq StepKey
Eq Step
Eq GetDirectoryA
Eq GetDirectoryQ
Eq DoesDirectoryExistA
Eq DoesDirectoryExistQ
Eq DoesFileExistA
Eq DoesFileExistQ
Eq FileA
Eq FileQ
Eq AlwaysRerunA
Eq AlwaysRerunQ
Eq FilesA
Eq FilesQ
Eq a => Eq [a]
Eq a => Eq (Ratio a)
Eq (Fixed a)
Eq a => Eq (Complex a)
Eq (TVar a)
Eq a => Eq (Dual a)
Eq a => Eq (Sum a)
Eq a => Eq (Product a)
Eq a => Eq (First a)
Eq a => Eq (Last a)
Eq (IORef a)
Eq (MVar a)
Eq a => Eq (Maybe a)
Eq a => Eq (Tree a)
Eq a => Eq (Seq a)
Eq a => Eq (ViewL a)
Eq a => Eq (ViewR a)
Eq a => Eq (IntMap a)
Eq a => Eq (Set a)
(Hashable a, Eq a) => Eq (HashSet a)
Eq answer => Eq (OracleA answer)
Eq question => Eq (OracleQ question)
(Eq a, Eq b) => Eq (Either a b)
(Eq a, Eq b) => Eq (a, b)
(Ix ix, Eq e, IArray UArray e) => Eq (UArray ix e)
(Ix i, Eq e) => Eq (Array i e)
(Eq k, Eq a) => Eq (Map k a)
(Eq k, Eq v) => Eq (Leaf k v)
(Eq k, Eq v) => Eq (HashMap k v)
(Eq a, Eq b, Eq c) => Eq (a, b, c)
Eq (STUArray s i e)
Eq (STArray s i e)
(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)
(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

class Hashable a where

The class of types that can be converted to a hash value.

Methods

hashWithSalt :: Int -> a -> Int

Return a hash value for the argument, using the given salt.

The general contract of hashWithSalt is:

  • If a value is hashed using the same salt during distinct runs of an application, the result must remain the same. (This is necessary to make it possible to store hashes on persistent media.)
  • If two values are equal according to the == method, then applying the hashWithSalt method on each of the two values must produce the same integer result if the same salt is used in each case.
  • It is not required that if two values are unequal according to the == method, then applying the hashWithSalt method on each of the two values must produce distinct integer results. (Every programmer will be aware that producing distinct integer results for unequal values will improve the performance of hashing-based data structures.)

This method can be used to compute different hash values for the same input by providing a different salt in each application of the method. This implies that any instance that defines hashWithSalt must make use of the salt in its implementation.

Instances

Hashable Value
Hashable Key
Hashable FileTime
Hashable StepKey
Hashable Step
Hashable GetDirectoryA
Hashable GetDirectoryQ
Hashable DoesDirectoryExistA
Hashable DoesDirectoryExistQ
Hashable DoesFileExistA
Hashable DoesFileExistQ
Hashable FileA
Hashable FileQ
Hashable AlwaysRerunA
Hashable AlwaysRerunQ
Hashable FilesA
Hashable FilesQ
Hashable a => Hashable [a]
Hashable answer => Hashable (OracleA answer)
Hashable question => Hashable (OracleQ question)
(Hashable a, Hashable b) => Hashable (Either a b)
(Hashable a1, Hashable a2) => Hashable (a1, a2)
(Hashable a1, Hashable a2, Hashable a3) => Hashable (a1, a2, a3)
(Hashable a1, Hashable a2, Hashable a3, Hashable a4) => Hashable (a1, a2, a3, a4)
(Hashable a1, Hashable a2, Hashable a3, Hashable a4, Hashable a5) => Hashable (a1, a2, a3, a4, a5)
(Hashable a1, Hashable a2, Hashable a3, Hashable a4, Hashable a5, Hashable a6) => Hashable (a1, a2, a3, a4, a5, a6)
(Hashable a1, Hashable a2, Hashable a3, Hashable a4, Hashable a5, Hashable a6, Hashable a7) => Hashable (a1, a2, a3, a4, a5, a6, a7)

class Binary t where

The Binary class provides put and get , methods to encode and decode a Haskell value to a lazy ByteString. It mirrors the Read and Show classes for textual representation of Haskell types, and is suitable for serialising Haskell values to disk, over the network.

For parsing and generating simple external binary formats (e.g. C structures), Binary may be used, but in general is not suitable for complex protocols. Instead use the Put and Get primitives directly.

Instances of Binary should satisfy the following property:

 decode . encode == id

That is, the get and put methods should be the inverse of each other. A range of instances are provided for basic Haskell types.

Methods

put :: t -> Put

Encode a value in the Put monad.

get :: Get t

Decode a value in the Get monad

Instances

Binary ()
Binary Witness
Binary Id
Binary FileTime
Binary BS
Binary StepKey
Binary Step
Binary GetDirectoryA
Binary GetDirectoryQ
Binary DoesDirectoryExistA
Binary DoesDirectoryExistQ
Binary DoesFileExistA
Binary DoesFileExistQ
Binary FileA
Binary FileQ
Binary AlwaysRerunA
Binary AlwaysRerunQ
Binary FilesA
Binary FilesQ
Binary a => Binary [a]
(Binary a, Integral a) => Binary (Ratio a)
Binary a => Binary (Maybe a)
Binary e => Binary (Tree e)
Binary e => Binary (Seq e)
Binary e => Binary (IntMap e)
(Ord a, Binary a) => Binary (Set a)
Binary answer => Binary (OracleA answer)
Binary question => Binary (OracleQ question)
(Binary a, Binary b) => Binary (Either a b)
(Binary a, Binary b) => Binary (a, b)
(Binary i, Ix i, Binary e, IArray UArray e) => Binary (UArray i e)
(Binary i, Ix i, Binary e) => Binary (Array i e)
(Ord k, Binary k, Binary e) => Binary (Map k e)
(Binary a, Binary b, Binary c) => Binary (a, b, c)
(Binary a, Binary b, Binary c, Binary d) => Binary (a, b, c, d)
(Binary a, Binary b, Binary c, Binary d, Binary e) => Binary (a, b, c, d, e)
(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f) => Binary (a, b, c, d, e, f)
(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g) => Binary (a, b, c, d, e, f, g)
(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g, Binary h) => Binary (a, b, c, d, e, f, g, h)
(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g, Binary h, Binary i) => Binary (a, b, c, d, e, f, g, h, i)
(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g, Binary h, Binary i, Binary j) => Binary (a, b, c, d, e, f, g, h, i, j)

class NFData a where

A class of types that can be fully evaluated.

Methods

rnf :: a -> ()

rnf should reduce its argument to normal form (that is, fully evaluate all sub-components), and then return '()'.

The default implementation of rnf is

 rnf a = a `seq` ()

which may be convenient when defining instances for data types with no unevaluated fields (e.g. enumerations).

Instances

NFData ()
NFData Value
NFData Key
NFData Id
NFData FileTime
NFData BS
NFData StepKey
NFData Depends
NFData Step
NFData GetDirectoryA
NFData GetDirectoryQ
NFData DoesDirectoryExistA
NFData DoesDirectoryExistQ
NFData DoesFileExistA
NFData DoesFileExistQ
NFData FileA
NFData FileQ
NFData AlwaysRerunA
NFData AlwaysRerunQ
NFData FilesA
NFData FilesQ
NFData a => NFData [a]
(Integral a, NFData a) => NFData (Ratio a)
(RealFloat a, NFData a) => NFData (Complex a)
NFData a => NFData (Maybe a)
NFData a => NFData (Digit a)
NFData a => NFData (Node a)
NFData a => NFData (Elem a)
NFData a => NFData (FingerTree a)
NFData a => NFData (Tree a)
NFData a => NFData (Seq a)
NFData a => NFData (IntMap a)
NFData a => NFData (Set a)
NFData a => NFData (HashSet a)
NFData answer => NFData (OracleA answer)
NFData question => NFData (OracleQ question)
NFData (a -> b)

This instance is for convenience and consistency with seq . This assumes that WHNF is equivalent to NF for functions.

(NFData a, NFData b) => NFData (Either a b)
(NFData a, NFData b) => NFData (a, b)
(Ix a, NFData a, NFData b) => NFData (Array a b)
(NFData k, NFData a) => NFData (Map k a)
(NFData k, NFData v) => NFData (Leaf k v)
(NFData k, NFData v) => NFData (HashMap k v)
(NFData a, NFData b, NFData c) => NFData (a, b, c)
(NFData a, NFData b, NFData c, NFData d) => NFData (a, b, c, d)
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5) => NFData (a1, a2, a3, a4, a5)
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6) => NFData (a1, a2, a3, a4, a5, a6)
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7) => NFData (a1, a2, a3, a4, a5, a6, a7)
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8) => NFData (a1, a2, a3, a4, a5, a6, a7, a8)
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8, NFData a9) => NFData (a1, a2, a3, a4, a5, a6, a7, a8, a9)

AltStyle によって変換されたページ (->オリジナル) /