shake-0.13.4: Build system library, like Make, but more accurate dependencies.

Safe HaskellSafe-Inferred

Development.Shake.Classes

Description

This module reexports the six necessary type classes that every Rule type must support. You can use this module to define new rules without depending on the binary, deepseq and hashable packages.

Synopsis

Documentation

class Show a where

Conversion of values to readable String s.

Minimal complete definition: showsPrec or show .

Derived instances of Show have the following properties, which are compatible with derived instances of Read :

  • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
  • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
  • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
  • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.

For example, given the declarations

 infixr 5 :^:
 data Tree a = Leaf a | Tree a :^: Tree a

the derived instance of Show is equivalent to

 instance (Show a) => Show (Tree a) where
 showsPrec d (Leaf m) = showParen (d > app_prec) $
 showString "Leaf " . showsPrec (app_prec+1) m
 where app_prec = 10
 showsPrec d (u :^: v) = showParen (d > up_prec) $
 showsPrec (up_prec+1) u .
 showString " :^: " .
 showsPrec (up_prec+1) v
 where up_prec = 5

Note that right-associativity of :^: is ignored. For example,

  • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

Methods

showsPrec

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> a

the value to be converted to a String

-> ShowS

Convert a value to a readable String .

showsPrec should satisfy the law

 showsPrec d x r ++ s == showsPrec d x (r ++ s)

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec , and delivers the value that showsPrec started with.

show :: a -> String

A specialised variant of showsPrec , using precedence context zero, and returning an ordinary String .

showList :: [a] -> ShowS

The method showList is provided to allow the programmer to give a specialised way of showing lists of values. For example, this is used by the predefined Show instance of the Char type, where values of type String should be shown in double quotes, rather than between square brackets.

Instances

Show ()
Show HandleType
Show Number
Show Padding
Show DateFormatSpec
Show Text
Show Text
Show StdGen
Show a => Show [a]
(Integral a, Show a) => Show (Ratio a)
Show (Ptr a)
Show (FunPtr a)
Show a => Show (Complex a)
Show a => Show (Dual a)
Show a => Show (Sum a)
Show a => Show (Product a)
Show a => Show (First a)
Show a => Show (Last a)
Show a => Show (Maybe a)
Show a => Show (Tree a)
Show a => Show (Seq a)
Show a => Show (ViewL a)
Show a => Show (ViewR a)
Show a => Show (IntMap a)
Show a => Show (Set a)
Show a => Show (Decoder a)
Show a => Show (HashSet a)
(Show a, Show b) => Show (Either a b)
(Show a, Show b) => Show (a, b)
(Ix ix, Show ix, Show e, IArray UArray e) => Show (UArray ix e)
(Ix a, Show a, Show b) => Show (Array a b)
(Show k, Show a) => Show (Map k a)
(Show k, Show v) => Show (HashMap k v)
(Show a, Show b, Show c) => Show (a, b, c)
(Show a, Show b, Show c, Show d) => Show (a, b, c, d)
(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e)
(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

class Typeable a where

The class Typeable allows a concrete representation of a type to be calculated.

Methods

typeOf :: a -> TypeRep

Takes a value of type a and returns a concrete representation of that type. The value of the argument should be ignored by any instance of Typeable , so that it is safe to pass undefined as the argument.

Instances

Typeable Handle__
Typeable Text
Typeable Text
(Typeable1 s, Typeable a) => Typeable (s a)

One Typeable instance for all Typeable1 instances

class Eq a where

The Eq class defines equality (== ) and inequality (/= ). All the basic datatypes exported by the Prelude are instances of Eq , and Eq may be derived for any datatype whose constituents are also instances of Eq .

Minimal complete definition: either == or /= .

Methods

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

Instances

Eq ()
Eq Number
Eq Constr

Equality of constructors

Eq Text
Eq Text
Eq a => Eq [a]
Eq a => Eq (Ratio a)
Eq (Ptr a)
Eq (FunPtr a)
Eq (Fixed a)
Eq a => Eq (Complex a)
Eq (Chan a)
Eq (TVar a)
Eq a => Eq (Dual a)
Eq a => Eq (Sum a)
Eq a => Eq (Product a)
Eq a => Eq (First a)
Eq a => Eq (Last a)
Eq (IORef a)
Eq (MVar a)
Eq a => Eq (Maybe a)
Eq a => Eq (Tree a)
Eq a => Eq (Seq a)
Eq a => Eq (ViewL a)
Eq a => Eq (ViewR a)
Eq a => Eq (IntMap a)
Eq a => Eq (Set a)
(Hashable a, Eq a) => Eq (HashSet a)
(Eq a, Eq b) => Eq (Either a b)
(Eq a, Eq b) => Eq (a, b)
(Ix ix, Eq e, IArray UArray e) => Eq (UArray ix e)
(Ix i, Eq e) => Eq (Array i e)
(Eq k, Eq a) => Eq (Map k a)
(Eq k, Eq v) => Eq (Leaf k v)
(Eq k, Eq v) => Eq (HashMap k v)
(Eq a, Eq b, Eq c) => Eq (a, b, c)
Eq (STUArray s i e)
Eq (STArray s i e)
(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)
(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

class Hashable a where

Methods

hashWithSalt :: Int -> a -> Int

hash :: a -> Int

Instances

class Binary t where

Methods

put :: t -> Put

get :: Get t

Instances

Binary ()
Binary a => Binary [a]
(Binary a, Integral a) => Binary (Ratio a)
Binary a => Binary (Maybe a)
Binary e => Binary (Tree e)
Binary e => Binary (Seq e)
Binary e => Binary (IntMap e)
Binary a => Binary (Set a)
(Binary a, Binary b) => Binary (Either a b)
(Binary a, Binary b) => Binary (a, b)
(Binary i, Ix i, Binary e, IArray UArray e) => Binary (UArray i e)
(Binary i, Ix i, Binary e) => Binary (Array i e)
(Binary k, Binary e) => Binary (Map k e)
(Binary a, Binary b, Binary c) => Binary (a, b, c)
(Binary a, Binary b, Binary c, Binary d) => Binary (a, b, c, d)
(Binary a, Binary b, Binary c, Binary d, Binary e) => Binary (a, b, c, d, e)
(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f) => Binary (a, b, c, d, e, f)
(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g) => Binary (a, b, c, d, e, f, g)
(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g, Binary h) => Binary (a, b, c, d, e, f, g, h)
(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g, Binary h, Binary i) => Binary (a, b, c, d, e, f, g, h, i)
(Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g, Binary h, Binary i, Binary j) => Binary (a, b, c, d, e, f, g, h, i, j)

class NFData a where

A class of types that can be fully evaluated.

Methods

rnf :: a -> ()

rnf should reduce its argument to normal form (that is, fully evaluate all sub-components), and then return '()'.

The default implementation of rnf is

 rnf a = a `seq` ()

which may be convenient when defining instances for data types with no unevaluated fields (e.g. enumerations).

Instances

NFData ()
NFData Text
NFData Text
NFData a => NFData [a]
(Integral a, NFData a) => NFData (Ratio a)
(RealFloat a, NFData a) => NFData (Complex a)
NFData a => NFData (Maybe a)
NFData a => NFData (Digit a)
NFData a => NFData (Node a)
NFData a => NFData (Elem a)
NFData a => NFData (FingerTree a)
NFData a => NFData (Tree a)
NFData a => NFData (Seq a)
NFData a => NFData (IntMap a)
NFData a => NFData (Set a)
NFData a => NFData (HashSet a)
NFData (a -> b)

This instance is for convenience and consistency with seq . This assumes that WHNF is equivalent to NF for functions.

(NFData a, NFData b) => NFData (Either a b)
(NFData a, NFData b) => NFData (a, b)
(Ix a, NFData a, NFData b) => NFData (Array a b)
(NFData k, NFData a) => NFData (Map k a)
(NFData k, NFData v) => NFData (Leaf k v)
(NFData k, NFData v) => NFData (HashMap k v)
(NFData a, NFData b, NFData c) => NFData (a, b, c)
(NFData a, NFData b, NFData c, NFData d) => NFData (a, b, c, d)
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5) => NFData (a1, a2, a3, a4, a5)
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6) => NFData (a1, a2, a3, a4, a5, a6)
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7) => NFData (a1, a2, a3, a4, a5, a6, a7)
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8) => NFData (a1, a2, a3, a4, a5, a6, a7, a8)
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8, NFData a9) => NFData (a1, a2, a3, a4, a5, a6, a7, a8, a9)

AltStyle によって変換されたページ (->オリジナル) /