{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[FloatOut]{Float bindings outwards (towards the top level)}
``Long-distance'' floating of bindings towards the top level.
-}{-# LANGUAGE CPP #-}moduleFloatOut(floatOutwards )whereimportGhcPreludeimportCoreSynimportCoreUtilsimportMkCoreimportCoreArity(etaExpand)importCoreMonad(FloatOutSwitches(..))importDynFlagsimportErrUtils(dumpIfSet_dyn)importId(Id,idArity,idType,isBottomingId,isJoinId,isJoinId_maybe)importSetLevels importUniqSupply(UniqSupply)importBagimportUtilimportMaybesimportOutputableimportTypeimportqualifiedData.IntMapasMimportData.List(partition)#include "HsVersions.h"
{-
 -----------------
 Overall game plan
 -----------------
The Big Main Idea is:
 To float out sub-expressions that can thereby get outside
 a non-one-shot value lambda, and hence may be shared.
To achieve this we may need to do two things:
 a) Let-bind the sub-expression:
 f (g x) ==> let lvl = f (g x) in lvl
 Now we can float the binding for 'lvl'.
 b) More than that, we may need to abstract wrt a type variable
 \x -> ... /\a -> let v = ...a... in ....
 Here the binding for v mentions 'a' but not 'x'. So we
 abstract wrt 'a', to give this binding for 'v':
 vp = /\a -> ...a...
 v = vp a
 Now the binding for vp can float out unimpeded.
 I can't remember why this case seemed important enough to
 deal with, but I certainly found cases where important floats
 didn't happen if we did not abstract wrt tyvars.
With this in mind we can also achieve another goal: lambda lifting.
We can make an arbitrary (function) binding float to top level by
abstracting wrt *all* local variables, not just type variables, leaving
a binding that can be floated right to top level. Whether or not this
happens is controlled by a flag.
Random comments
~~~~~~~~~~~~~~~
At the moment we never float a binding out to between two adjacent
lambdas. For example:
@
 \x y -> let t = x+x in ...
===>
 \x -> let t = x+x in \y -> ...
@
Reason: this is less efficient in the case where the original lambda
is never partially applied.
But there's a case I've seen where this might not be true. Consider:
@
elEm2 x ys
 = elem' x ys
 where
 elem' _ [] = False
 elem' x (y:ys) = x==y || elem' x ys
@
It turns out that this generates a subexpression of the form
@
 \deq x ys -> let eq = eqFromEqDict deq in ...
@
which might usefully be separated to
@
 \deq -> let eq = eqFromEqDict deq in \xy -> ...
@
Well, maybe. We don't do this at the moment.
Note [Join points]
~~~~~~~~~~~~~~~~~~
Every occurrence of a join point must be a tail call (see Note [Invariants on
join points] in CoreSyn), so we must be careful with how far we float them. The
mechanism for doing so is the *join ceiling*, detailed in Note [Join ceiling]
in SetLevels. For us, the significance is that a binder might be marked to be
dropped at the nearest boundary between tail calls and non-tail calls. For
example:
 (< join j = ... in
 let x = < ... > in
 case < ... > of
 A -> ...
 B -> ...
 >) < ... > < ... >
Here the join ceilings are marked with angle brackets. Either side of an
application is a join ceiling, as is the scrutinee position of a case
expression or the RHS of a let binding (but not a join point).
Why do we *want* do float join points at all? After all, they're never
allocated, so there's no sharing to be gained by floating them. However, the
other benefit of floating is making RHSes small, and this can have a significant
impact. In particular, stream fusion has been known to produce nested loops like
this:
 joinrec j1 x1 =
 joinrec j2 x2 =
 joinrec j3 x3 = ... jump j1 (x3 + 1) ... jump j2 (x3 + 1) ...
 in jump j3 x2
 in jump j2 x1
 in jump j1 x
(Assume x1 and x2 do *not* occur free in j3.)
Here j1 and j2 are wholly superfluous---each of them merely forwards its
argument to j3. Since j3 only refers to x3, we can float j2 and j3 to make
everything one big mutual recursion:
 joinrec j1 x1 = jump j2 x1
 j2 x2 = jump j3 x2
 j3 x3 = ... jump j1 (x3 + 1) ... jump j2 (x3 + 1) ...
 in jump j1 x
Now the simplifier will happily inline the trivial j1 and j2, leaving only j3.
Without floating, we're stuck with three loops instead of one.
************************************************************************
* *
\subsection[floatOutwards]{@floatOutwards@: let-floating interface function}
* *
************************************************************************
-}floatOutwards::FloatOutSwitches->DynFlags->UniqSupply->CoreProgram->IOCoreProgramfloatOutwards float_sws dflags us pgm =do{let{annotated_w_levels =setLevels float_sws pgm us ;(fss ,binds_s' )=unzip(mapfloatTopBind annotated_w_levels )};dumpIfSet_dyndflags Opt_D_verbose_core2core"Levels added:"(vcat(mappprannotated_w_levels ));let{(tlets ,ntlets ,lams )=get_stats (sum_stats fss )};dumpIfSet_dyndflags Opt_D_dump_simpl_stats"FloatOut stats:"(hcat[inttlets ,text" Lets floated to top level; ",intntlets ,text" Lets floated elsewhere; from ",intlams ,text" Lambda groups"]);return(bagToList(unionManyBagsbinds_s' ))}floatTopBind::LevelledBind ->(FloatStats ,BagCoreBind)floatTopBind bind =case(floatBind bind )of{(fs ,floats ,bind' )->letfloat_bag =flattenTopFloats floats incasebind' of-- bind' can't have unlifted values or join points, so can only be one-- value bind, rec or non-rec (see comment on floatBind)[Recprs ]->(fs ,unitBag(Rec(addTopFloatPairs float_bag prs )))[NonRecb e ]->(fs ,float_bag `snocBag`NonRecb e )_->pprPanic"floatTopBind"(pprbind' )}{-
************************************************************************
* *
\subsection[FloatOut-Bind]{Floating in a binding (the business end)}
* *
************************************************************************
-}floatBind::LevelledBind ->(FloatStats ,FloatBinds ,[CoreBind])-- Returns a list with either-- * A single non-recursive binding (value or join point), or-- * The following, in order:-- * Zero or more non-rec unlifted bindings-- * One or both of:-- * A recursive group of join binds-- * A recursive group of value binds-- See Note [Floating out of Rec rhss] for why things get arranged this way.floatBind (NonRec(TBvar _)rhs )=case(floatRhs var rhs )of{(fs ,rhs_floats ,rhs' )->-- A tiresome hack:-- see Note [Bottoming floats: eta expansion] in SetLevelsletrhs'' |isBottomingIdvar =etaExpand(idArityvar )rhs' |otherwise=rhs' in(fs ,rhs_floats ,[NonRecvar rhs'' ])}floatBind(Recpairs )=casefloatList do_pair pairs of{(fs ,rhs_floats ,new_pairs )->let(new_ul_pairss ,new_other_pairss )=unzipnew_pairs (new_join_pairs ,new_l_pairs )=partition(isJoinId.fst)(concatnew_other_pairss )-- Can't put the join points and the values in the same rec groupnew_rec_binds |nullnew_join_pairs =[Recnew_l_pairs ]|nullnew_l_pairs =[Recnew_join_pairs ]|otherwise=[Recnew_l_pairs ,Recnew_join_pairs ]new_non_rec_binds =[NonRecb e |(b ,e )<-concatnew_ul_pairss ]in(fs ,rhs_floats ,new_non_rec_binds ++new_rec_binds )}wheredo_pair::(LevelledBndr ,LevelledExpr )->(FloatStats ,FloatBinds ,([(Id,CoreExpr)],-- Non-recursive unlifted value bindings[(Id,CoreExpr)]))-- Join points and lifted value bindingsdo_pair (TBname spec ,rhs )|isTopLvl dest_lvl -- See Note [floatBind for top level]=case(floatRhs name rhs )of{(fs ,rhs_floats ,rhs' )->(fs ,emptyFloats ,([],addTopFloatPairs (flattenTopFloats rhs_floats )[(name ,rhs' )]))}|otherwise-- Note [Floating out of Rec rhss]=case(floatRhs name rhs )of{(fs ,rhs_floats ,rhs' )->case(partitionByLevel dest_lvl rhs_floats )of{(rhs_floats' ,heres )->case(splitRecFloats heres )of{(ul_pairs ,pairs ,case_heres )->letpairs' =(name ,installUnderLambdas case_heres rhs' ):pairs in(fs ,rhs_floats' ,(ul_pairs ,pairs' ))}}}wheredest_lvl =floatSpecLevel spec splitRecFloats::BagFloatBind->([(Id,CoreExpr)],-- Non-recursive unlifted value bindings[(Id,CoreExpr)],-- Join points and lifted value bindingsBagFloatBind)-- A tail of further bindings-- The "tail" begins with a case-- See Note [Floating out of Rec rhss]splitRecFloats fs =go [][](bagToListfs )wherego ul_prs prs (FloatLet(NonRecb r ):fs )|isUnliftedType(idTypeb ),not(isJoinIdb )=go ((b ,r ):ul_prs )prs fs |otherwise=go ul_prs ((b ,r ):prs )fs goul_prs prs (FloatLet(Recprs' ):fs )=go ul_prs (prs' ++prs )fs goul_prs prs fs =(reverseul_prs ,prs ,listToBagfs )-- Order only matters for-- non-recinstallUnderLambdas::BagFloatBind->CoreExpr->CoreExpr-- Note [Floating out of Rec rhss]installUnderLambdas floats e |isEmptyBagfloats =e |otherwise=go e wherego (Lamb e )=Lamb (go e )goe =install floats e ---------------floatList::(a ->(FloatStats ,FloatBinds ,b ))->[a ]->(FloatStats ,FloatBinds ,[b ])floatList _[]=(zeroStats ,emptyFloats ,[])floatListf (a :as)=casef a of{(fs_a ,binds_a ,b )->casefloatList f asof{(fs_as ,binds_as ,bs )->(fs_a `add_stats `fs_as ,binds_a `plusFloats `binds_as ,b :bs )}}{-
Note [Floating out of Rec rhss]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider Rec { f<1,0> = \xy. body }
From the body we may get some floats. The ones with level <1,0> must
stay here, since they may mention f. Ideally we'd like to make them
part of the Rec block pairs -- but we can't if there are any
FloatCases involved.
Nor is it a good idea to dump them in the rhs, but outside the lambda
 f = case x of I# y -> \xy. body
because now f's arity might get worse, which is Not Good. (And if
there's an SCC around the RHS it might not get better again.
See #5342.)
So, gruesomely, we split the floats into
 * the outer FloatLets, which can join the Rec, and
 * an inner batch starting in a FloatCase, which are then
 pushed *inside* the lambdas.
This loses full-laziness the rare situation where there is a
FloatCase and a Rec interacting.
If there are unlifted FloatLets (that *aren't* join points) among the floats,
we can't add them to the recursive group without angering Core Lint, but since
they must be ok-for-speculation, they can't actually be making any recursive
calls, so we can safely pull them out and keep them non-recursive.
(Why is something getting floated to <1,0> that doesn't make a recursive call?
The case that came up in testing was that f *and* the unlifted binding were
getting floated *to the same place*:
 \x<2,0> ->
 ... <3,0>
 letrec { f<F<2,0>> =
 ... let x'<F<2,0>> = x +# 1# in ...
 } in ...
Everything gets labeled "float to <2,0>" because it all depends on x, but this
makes f and x' look mutually recursive when they're not.
The test was shootout/k-nucleotide, as compiled using commit 47d5dd68 on the
wip/join-points branch.
TODO: This can probably be solved somehow in SetLevels. The difference between
"this *is at* level <2,0>" and "this *depends on* level <2,0>" is very
important.)
Note [floatBind for top level]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We may have a *nested* binding whose destination level is (FloatMe tOP_LEVEL), thus
 letrec { foo <0,0> = .... (let bar<0,0> = .. in ..) .... }
The binding for bar will be in the "tops" part of the floating binds,
and thus not partioned by floatBody.
We could perhaps get rid of the 'tops' component of the floating binds,
but this case works just as well.
************************************************************************
\subsection[FloatOut-Expr]{Floating in expressions}
* *
************************************************************************
-}floatBody::Level ->LevelledExpr ->(FloatStats ,FloatBinds ,CoreExpr)floatBody lvl arg -- Used rec rhss, and case-alternative rhss=case(floatExpr arg )of{(fsa ,floats ,arg' )->case(partitionByLevel lvl floats )of{(floats' ,heres )->-- Dump bindings are bound here(fsa ,floats' ,install heres arg' )}}-----------------{- Note [Floating past breakpoints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to disallow floating out of breakpoint ticks (see #10052). However, I
think this is too restrictive.
Consider the case of an expression scoped over by a breakpoint tick,
 tick<...> (let x = ... in f x)
In this case it is completely legal to float out x, despite the fact that
breakpoint ticks are scoped,
 let x = ... in (tick<...> f x)
The reason here is that we know that the breakpoint will still be hit when the
expression is entered since the tick still scopes over the RHS.
-}floatExpr::LevelledExpr ->(FloatStats ,FloatBinds ,CoreExpr)floatExpr (Varv )=(zeroStats ,emptyFloats ,Varv )floatExpr(Typety )=(zeroStats ,emptyFloats ,Typety )floatExpr(Coercionco )=(zeroStats ,emptyFloats ,Coercionco )floatExpr(Litlit )=(zeroStats ,emptyFloats ,Litlit )floatExpr(Appe a )=case(atJoinCeiling $floatExpr e )of{(fse ,floats_e ,e' )->case(atJoinCeiling $floatExpr a )of{(fsa ,floats_a ,a' )->(fse `add_stats `fsa ,floats_e `plusFloats `floats_a ,Appe' a' )}}floatExprlam @(Lam(TB_lam_spec )_)=let(bndrs_w_lvls ,body )=collectBinderslam bndrs =[b |TBb _<-bndrs_w_lvls ]bndr_lvl =asJoinCeilLvl (floatSpecLevel lam_spec )-- All the binders have the same level-- See SetLevels.lvlLamBndrs-- Use asJoinCeilLvl to make this the join ceilingincase(floatBody bndr_lvl body )of{(fs ,floats ,body' )->(add_to_stats fs floats ,floats ,mkLamsbndrs body' )}floatExpr(Ticktickish expr )|tickish `tickishScopesLike`SoftScope-- not scoped, can just float=case(atJoinCeiling $floatExpr expr )of{(fs ,floating_defns ,expr' )->(fs ,floating_defns ,Ticktickish expr' )}|not(tickishCountstickish )||tickishCanSplittickish =case(atJoinCeiling $floatExpr expr )of{(fs ,floating_defns ,expr' )->let-- Annotate bindings floated outwards past an scc expression-- with the cc. We mark that cc as "duplicated", though.annotated_defns =wrapTick (mkNoCounttickish )floating_defns in(fs ,annotated_defns ,Ticktickish expr' )}-- Note [Floating past breakpoints]|Breakpoint{}<-tickish =case(floatExpr expr )of{(fs ,floating_defns ,expr' )->(fs ,floating_defns ,Ticktickish expr' )}|otherwise=pprPanic"floatExpr tick"(pprtickish )floatExpr(Castexpr co )=case(atJoinCeiling $floatExpr expr )of{(fs ,floating_defns ,expr' )->(fs ,floating_defns ,Castexpr' co )}floatExpr(Letbind body )=casebind_spec ofFloatMe dest_lvl ->case(floatBind bind )of{(fsb ,bind_floats ,binds' )->case(floatExpr body )of{(fse ,body_floats ,body' )->letnew_bind_floats =foldrplusFloats emptyFloats (map(unitLetFloat dest_lvl )binds' )in(add_stats fsb fse ,bind_floats `plusFloats `new_bind_floats `plusFloats `body_floats ,body' )}}StayPut bind_lvl -- See Note [Avoiding unnecessary floating]->case(floatBind bind )of{(fsb ,bind_floats ,binds' )->case(floatBody bind_lvl body )of{(fse ,body_floats ,body' )->(add_stats fsb fse ,bind_floats `plusFloats `body_floats ,foldrLetbody' binds' )}}wherebind_spec =casebind ofNonRec(TB_s )_->s Rec((TB_s ,_):_)->s Rec[]->panic"floatExpr:rec"floatExpr(Casescrut (TBcase_bndr case_spec )ty alts )=casecase_spec ofFloatMe dest_lvl -- Case expression moves|[(con @(DataAlt{}),bndrs ,rhs )]<-alts ->caseatJoinCeiling $floatExpr scrut of{(fse ,fde ,scrut' )->casefloatExpr rhs of{(fsb ,fdb ,rhs' )->letfloat =unitCaseFloat dest_lvl scrut' case_bndr con [b |TBb _<-bndrs ]in(add_stats fse fsb ,fde `plusFloats `float `plusFloats `fdb ,rhs' )}}|otherwise->pprPanic"Floating multi-case"(ppralts )StayPut bind_lvl -- Case expression stays put->caseatJoinCeiling $floatExpr scrut of{(fse ,fde ,scrut' )->casefloatList (float_alt bind_lvl )alts of{(fsa ,fda ,alts' )->(add_stats fse fsa ,fda `plusFloats `fde ,Casescrut' case_bndr ty alts' )}}wherefloat_alt bind_lvl (con ,bs ,rhs )=case(floatBody bind_lvl rhs )of{(fs ,rhs_floats ,rhs' )->(fs ,rhs_floats ,(con ,[b |TBb _<-bs ],rhs' ))}floatRhs::CoreBndr->LevelledExpr ->(FloatStats ,FloatBinds ,CoreExpr)floatRhs bndr rhs |Justjoin_arity <-isJoinId_maybebndr ,Just(bndrs ,body )<-try_collect join_arity rhs []=casebndrs of[]->floatExpr rhs (TB_lam_spec ):_->letlvl =floatSpecLevel lam_spec incasefloatBody lvl body of{(fs ,floats ,body' )->(fs ,floats ,mkLams[b |TBb _<-bndrs ]body' )}|otherwise=atJoinCeiling $floatExpr rhs wheretry_collect 0expr acc =Just(reverseacc ,expr )try_collectn (Lamb e )acc =try_collect (n -1)e (b :acc )try_collect___=Nothing{-
Note [Avoiding unnecessary floating]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general we want to avoid floating a let unnecessarily, because
it might worsen strictness:
 let
 x = ...(let y = e in y+y)....
Here y is demanded. If we float it outside the lazy 'x=..' then
we'd have to zap its demand info, and it may never be restored.
So at a 'let' we leave the binding right where the are unless
the binding will escape a value lambda, e.g.
(\x -> let y = fac 100 in y)
That's what the partitionByMajorLevel does in the floatExpr (Let ...)
case.
Notice, though, that we must take care to drop any bindings
from the body of the let that depend on the staying-put bindings.
We used instead to do the partitionByMajorLevel on the RHS of an '=',
in floatRhs. But that was quite tiresome. We needed to test for
values or trival rhss, because (in particular) we don't want to insert
new bindings between the "=" and the "\". E.g.
 f = \x -> let <bind> in <body>
We do not want
 f = let <bind> in \x -> <body>
(a) The simplifier will immediately float it further out, so we may
 as well do so right now; in general, keeping rhss as manifest
 values is good
(b) If a float-in pass follows immediately, it might add yet more
 bindings just after the '='. And some of them might (correctly)
 be strict even though the 'let f' is lazy, because f, being a value,
 gets its demand-info zapped by the simplifier.
And even all that turned out to be very fragile, and broke
altogether when profiling got in the way.
So now we do the partition right at the (Let..) itself.
************************************************************************
* *
\subsection{Utility bits for floating stats}
* *
************************************************************************
I didn't implement this with unboxed numbers. I don't want to be too
strict in this stuff, as it is rarely turned on. (WDP 95/09)
-}dataFloatStats =FlS Int-- Number of top-floats * lambda groups they've been pastInt-- Number of non-top-floats * lambda groups they've been pastInt-- Number of lambda (groups) seenget_stats::FloatStats ->(Int,Int,Int)get_stats (FlS a b c )=(a ,b ,c )zeroStats::FloatStats zeroStats =FlS 000sum_stats::[FloatStats ]->FloatStats sum_stats xs =foldradd_stats zeroStats xs add_stats::FloatStats ->FloatStats ->FloatStats add_stats (FlS a1 b1 c1 )(FlS a2 b2 c2 )=FlS (a1 +a2 )(b1 +b2 )(c1 +c2 )add_to_stats::FloatStats ->FloatBinds ->FloatStats add_to_stats (FlS a b c )(FB tops ceils others )=FlS (a +lengthBagtops )(b +lengthBagceils +lengthBag(flattenMajor others ))(c +1){-
************************************************************************
* *
\subsection{Utility bits for floating}
* *
************************************************************************
Note [Representation of FloatBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The FloatBinds types is somewhat important. We can get very large numbers
of floating bindings, often all destined for the top level. A typical example
is x = [4,2,5,2,5, .... ]
Then we get lots of small expressions like (fromInteger 4), which all get
lifted to top level.
The trouble is that
 (a) we partition these floating bindings *at every binding site*
 (b) SetLevels introduces a new bindings site for every float
So we had better not look at each binding at each binding site!
That is why MajorEnv is represented as a finite map.
We keep the bindings destined for the *top* level separate, because
we float them out even if they don't escape a *value* lambda; see
partitionByMajorLevel.
-}typeFloatLet =CoreBind-- INVARIANT: a FloatLet is always liftedtypeMajorEnv =M.IntMapMinorEnv -- Keyed by major leveltypeMinorEnv =M.IntMap(BagFloatBind)-- Keyed by minor leveldataFloatBinds =FB !(BagFloatLet )-- Destined for top level!(BagFloatBind)-- Destined for join ceiling!MajorEnv -- Other levels-- See Note [Representation of FloatBinds]instanceOutputableFloatBinds whereppr (FB fbs ceils defs )=text"FB"<+>(braces$vcat[text"tops ="<+>pprfbs ,text"ceils ="<+>pprceils ,text"non-tops ="<+>pprdefs ])flattenTopFloats::FloatBinds ->BagCoreBindflattenTopFloats (FB tops ceils defs )=ASSERT2(isEmptyBag(flattenMajordefs ),ppr defs)ASSERT2(isEmptyBagceils,pprceils)tops addTopFloatPairs::BagCoreBind->[(Id,CoreExpr)]->[(Id,CoreExpr)]addTopFloatPairs float_bag prs =foldrBagadd prs float_bag whereadd (NonRecb r )prs =(b ,r ):prs add(Recprs1 )prs2 =prs1 ++prs2 flattenMajor::MajorEnv ->BagFloatBindflattenMajor =M.foldr(unionBags.flattenMinor )emptyBagflattenMinor::MinorEnv ->BagFloatBindflattenMinor =M.foldrunionBagsemptyBagemptyFloats::FloatBinds emptyFloats =FB emptyBagemptyBagM.emptyunitCaseFloat::Level ->CoreExpr->Id->AltCon->[Var]->FloatBinds unitCaseFloat (Level major minor t )e b con bs |t ==JoinCeilLvl =FB emptyBagfloats M.empty|otherwise=FB emptyBagemptyBag(M.singletonmajor (M.singletonminor floats ))wherefloats =unitBag(FloatCasee b con bs )unitLetFloat::Level ->FloatLet ->FloatBinds unitLetFloat lvl @(Level major minor t )b |isTopLvl lvl =FB (unitBagb )emptyBagM.empty|t ==JoinCeilLvl =FB emptyBagfloats M.empty|otherwise=FB emptyBagemptyBag(M.singletonmajor (M.singletonminor floats ))wherefloats =unitBag(FloatLetb )plusFloats::FloatBinds ->FloatBinds ->FloatBinds plusFloats (FB t1 c1 l1 )(FB t2 c2 l2 )=FB (t1 `unionBags`t2 )(c1 `unionBags`c2 )(l1 `plusMajor `l2 )plusMajor::MajorEnv ->MajorEnv ->MajorEnv plusMajor =M.unionWithplusMinor plusMinor::MinorEnv ->MinorEnv ->MinorEnv plusMinor =M.unionWithunionBagsinstall::BagFloatBind->CoreExpr->CoreExprinstall defn_groups expr =foldrBagwrapFloatexpr defn_groups partitionByLevel::Level -- Partitioning level->FloatBinds -- Defns to be divided into 2 piles...->(FloatBinds ,-- Defns with level strictly < partition level,BagFloatBind)-- The rest{-
-- ---- partitionByMajorLevel ----
-- Float it if we escape a value lambda,
-- *or* if we get to the top level
-- *or* if it's a case-float and its minor level is < current
--
-- If we can get to the top level, say "yes" anyway. This means that
-- x = f e
-- transforms to
-- lvl = e
-- x = f lvl
-- which is as it should be
partitionByMajorLevel (Level major _) (FB tops defns)
 = (FB tops outer, heres `unionBags` flattenMajor inner)
 where
 (outer, mb_heres, inner) = M.splitLookup major defns
 heres = case mb_heres of
 Nothing -> emptyBag
 Just h -> flattenMinor h
-}partitionByLevel (Level major minor typ )(FB tops ceils defns )=(FB tops ceils' (outer_maj `plusMajor `M.singletonmajor outer_min ),here_min `unionBags`here_ceil `unionBags`flattenMinor inner_min `unionBags`flattenMajor inner_maj )where(outer_maj ,mb_here_maj ,inner_maj )=M.splitLookupmajor defns (outer_min ,mb_here_min ,inner_min )=casemb_here_maj ofNothing->(M.empty,Nothing,M.empty)Justmin_defns ->M.splitLookupminor min_defns here_min =mb_here_min `orElse`emptyBag(here_ceil ,ceils' )|typ ==JoinCeilLvl =(ceils ,emptyBag)|otherwise=(emptyBag,ceils )-- Like partitionByLevel, but instead split out the bindings that are marked-- to float to the nearest join ceiling (see Note [Join points])partitionAtJoinCeiling::FloatBinds ->(FloatBinds ,BagFloatBind)partitionAtJoinCeiling (FB tops ceils defs )=(FB tops emptyBagdefs ,ceils )-- Perform some action at a join ceiling, i.e., don't let join points float out-- (see Note [Join points])atJoinCeiling::(FloatStats ,FloatBinds ,CoreExpr)->(FloatStats ,FloatBinds ,CoreExpr)atJoinCeiling (fs ,floats ,expr' )=(fs ,floats' ,install ceils expr' )where(floats' ,ceils )=partitionAtJoinCeiling floats wrapTick::TickishId->FloatBinds ->FloatBinds wrapTick t (FB tops ceils defns )=FB (mapBagwrap_bind tops )(wrap_defns ceils )(M.map(M.mapwrap_defns )defns )wherewrap_defns =mapBagwrap_one wrap_bind (NonRecbinder rhs )=NonRecbinder (maybe_tick rhs )wrap_bind(Recpairs )=Rec(mapSndmaybe_tick pairs )wrap_one (FloatLetbind )=FloatLet(wrap_bind bind )wrap_one(FloatCasee b c bs )=FloatCase(maybe_tick e )b c bs maybe_tick e |exprIsHNFe =tickHNFArgst e |otherwise=mkTickt e -- we don't need to wrap a tick around an HNF when we float it-- outside a tick: that is an invariant of the tick semantics-- Conversely, inlining of HNFs inside an SCC is allowed, and-- indeed the HNF we're floating here might well be inlined back-- again, and we don't want to end up with duplicate ticks.

AltStyle によって変換されたページ (->オリジナル) /