{-# LANGUAGE Trustworthy #-}{-# LANGUAGE NoImplicitPrelude #-}------------------------------------------------------------------------------- |-- Module : Data.Function-- Copyright : Nils Anders Danielsson 2006-- , Alexander Berntsen 2014-- License : BSD-style (see the LICENSE file in the distribution)---- Maintainer : libraries@haskell.org-- Stability : experimental-- Portability : portable---- Simple combinators working solely on and with functions.-------------------------------------------------------------------------------moduleData.Function(-- * "Prelude" re-exportsid ,const ,(. ),flip ,($ )-- * Other combinators,(& ),fix ,on )whereimportGHC.Base (($ ),(. ),id ,const ,flip )infixl0`on `infixl1& -- | @'fix' f@ is the least fixed point of the function @f@,-- i.e. the least defined @x@ such that @f x = x@.---- For example, we can write the factorial function using direct recursion as---- >>> let fac n = if n <= 1 then 1 else n * fac (n-1) in fac 5-- 120---- This uses the fact that Haskell’s @let@ introduces recursive bindings. We can-- rewrite this definition using 'fix',---- >>> fix (\rec n -> if n <= 1 then 1 else n * rec (n-1)) 5-- 120---- Instead of making a recursive call, we introduce a dummy parameter @rec@;-- when used within 'fix', this parameter then refers to 'fix'' argument, hence-- the recursion is reintroduced.fix::(a ->a )->a fix f =letx =f x inx -- | @'on' b u x y@ runs the binary function `b` /on/ the results of applying unary function `u` to two arguments `x` and `y`. From the opposite perspective, it transforms two inputs and combines the outputs.---- @((+) \``on`\` f) x y = f x + f y@---- Typical usage: @'Data.List.sortBy' ('compare' \`on\` 'fst')@.---- Algebraic properties:---- * @(*) \`on\` 'id' = (*) -- (if (*) &#x2209; {&#x22a5;, 'const' &#x22a5;})@---- * @((*) \`on\` f) \`on\` g = (*) \`on\` (f . g)@---- * @'flip' on f . 'flip' on g = 'flip' on (g . f)@on::(b ->b ->c )->(a ->b )->a ->a ->c (.*. )`on `f =\x y ->f x .*. f y -- Proofs (so that I don't have to edit the test-suite):-- (*) `on` id-- =-- \x y -> id x * id y-- =-- \x y -> x * y-- = { If (*) /= _|_ or const _|_. }-- (*)-- (*) `on` f `on` g-- =-- ((*) `on` f) `on` g-- =-- \x y -> ((*) `on` f) (g x) (g y)-- =-- \x y -> (\x y -> f x * f y) (g x) (g y)-- =-- \x y -> f (g x) * f (g y)-- =-- \x y -> (f . g) x * (f . g) y-- =-- (*) `on` (f . g)-- =-- (*) `on` f . g-- flip on f . flip on g-- =-- (\h (*) -> (*) `on` h) f . (\h (*) -> (*) `on` h) g-- =-- (\(*) -> (*) `on` f) . (\(*) -> (*) `on` g)-- =-- \(*) -> (*) `on` g `on` f-- = { See above. }-- \(*) -> (*) `on` g . f-- =-- (\h (*) -> (*) `on` h) (g . f)-- =-- flip on (g . f)-- | '&' is a reverse application operator. This provides notational-- convenience. Its precedence is one higher than that of the forward-- application operator '$', which allows '&' to be nested in '$'.---- >>> 5 & (+1) & show-- "6"---- @since 4.8.0.0(&)::a ->(a ->b )->b x & f =f x -- $setup-- >>> import Prelude

AltStyle によって変換されたページ (->オリジナル) /