{-# LANGUAGE CPP #-}{-# LANGUAGE GADTs #-}{-# LANGUAGE PolyKinds #-}{-# LANGUAGE Trustworthy #-}------------------------------------------------------------------------------- |-- Module : Data.Semigroupoid-- Copyright : (C) 2007-2015 Edward Kmett-- License : BSD-style (see the file LICENSE)---- Maintainer : Edward Kmett <ekmett@gmail.com>-- Stability : provisional-- Portability : portable---- A semigroupoid satisfies all of the requirements to be a Category except-- for the existence of identity arrows.----------------------------------------------------------------------------moduleData.Semigroupoid(Semigroupoid (..),WrappedCategory (..),Semi (..))whereimportControl.ApplicativeimportControl.ArrowimportControl.CategoryimportData.Functor.Bind importData.SemigroupimportqualifiedData.Type.CoercionasCoimportqualifiedData.Type.EqualityasEqimportPreludehiding(id,(.)) #ifdef MIN_VERSION_contravariant importData.Functor.Contravariant #endif #ifdef MIN_VERSION_comonad importData.Functor.Extend importControl.Comonad #endif #ifdef MIN_VERSION_tagged importData.Tagged(Tagged(..)) #endif -- | 'Control.Category.Category' sans 'Control.Category.id'classSemigroupoid c whereo ::c j k ->c i j ->c i k instanceSemigroupoid (->)whereo :: forall j k i. (j -> k) -> (i -> j) -> i -> k o =(j -> k) -> (i -> j) -> i -> k forall j k i. (j -> k) -> (i -> j) -> i -> k forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k). Category cat => cat b c -> cat a b -> cat a c (.)-- | <http://en.wikipedia.org/wiki/Band_(mathematics)#Rectangular_bands>instanceSemigroupoid (,)whereo :: forall j k i. (j, k) -> (i, j) -> (i, k) o (j _,k k )(i i ,j _)=(i i ,k k )instanceBind m =>Semigroupoid (Kleislim )whereKleislij -> m k g o :: forall j k i. Kleisli m j k -> Kleisli m i j -> Kleisli m i k `o` Kleislii -> m j f =(i -> m k) -> Kleisli m i k forall (m :: * -> *) a b. (a -> m b) -> Kleisli m a b Kleisli((i -> m k) -> Kleisli m i k) -> (i -> m k) -> Kleisli m i k forall a b. (a -> b) -> a -> b $\i a ->i -> m j f i a m j -> (j -> m k) -> m k forall a b. m a -> (a -> m b) -> m b forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b >>- j -> m k g #ifdef MIN_VERSION_comonad instanceExtend w =>Semigroupoid (Cokleisliw )whereCokleisliw j -> k f o :: forall j k i. Cokleisli w j k -> Cokleisli w i j -> Cokleisli w i k `o` Cokleisliw i -> j g =(w i -> k) -> Cokleisli w i k forall {k} (w :: k -> *) (a :: k) b. (w a -> b) -> Cokleisli w a b Cokleisli((w i -> k) -> Cokleisli w i k) -> (w i -> k) -> Cokleisli w i k forall a b. (a -> b) -> a -> b $w j -> k f (w j -> k) -> (w i -> w j) -> w i -> k forall j k i. (j -> k) -> (i -> j) -> i -> k forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k). Category cat => cat b c -> cat a b -> cat a c .(w i -> j) -> w i -> w j forall a b. (w a -> b) -> w a -> w b forall (w :: * -> *) a b. Extend w => (w a -> b) -> w a -> w b extended w i -> j g #endif #ifdef MIN_VERSION_contravariant instanceSemigroupoid OpwhereOpk -> j f o :: forall j k i. Op j k -> Op i j -> Op i k `o` Opj -> i g =(k -> i) -> Op i k forall a b. (b -> a) -> Op a b Op(j -> i g (j -> i) -> (k -> j) -> k -> i forall j k i. (j -> k) -> (i -> j) -> i -> k forall {k} (c :: k -> k -> *) (j :: k) (k :: k) (i :: k). Semigroupoid c => c j k -> c i j -> c i k `o` k -> j f ) #endif newtypeWrappedCategory k a b =WrapCategory {forall {k} {k} (k :: k -> k -> *) (a :: k) (b :: k). WrappedCategory k a b -> k a b unwrapCategory ::k a b }instanceCategoryk =>Semigroupoid (WrappedCategory k )whereWrapCategory k j k f o :: forall (j :: k) (k :: k) (i :: k). WrappedCategory k j k -> WrappedCategory k i j -> WrappedCategory k i k `o` WrapCategory k i j g =k i k -> WrappedCategory k i k forall {k} {k} (k :: k -> k -> *) (a :: k) (b :: k). k a b -> WrappedCategory k a b WrapCategory (k j k f k j k -> k i j -> k i k forall (b :: k) (c :: k) (a :: k). k b c -> k a b -> k a c forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k). Category cat => cat b c -> cat a b -> cat a c .k i j g )instanceCategoryk =>Category(WrappedCategory k )whereid :: forall (a :: k). WrappedCategory k a a id=k a a -> WrappedCategory k a a forall {k} {k} (k :: k -> k -> *) (a :: k) (b :: k). k a b -> WrappedCategory k a b WrapCategory k a a forall (a :: k). k a a forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a idWrapCategory k b c f . :: forall (b :: k) (c :: k) (a :: k). WrappedCategory k b c -> WrappedCategory k a b -> WrappedCategory k a c .WrapCategory k a b g =k a c -> WrappedCategory k a c forall {k} {k} (k :: k -> k -> *) (a :: k) (b :: k). k a b -> WrappedCategory k a b WrapCategory (k b c f k b c -> k a b -> k a c forall (b :: k) (c :: k) (a :: k). k b c -> k a b -> k a c forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k). Category cat => cat b c -> cat a b -> cat a c .k a b g )newtypeSemi m a b =Semi {forall {k} {k} m (a :: k) (b :: k). Semi m a b -> m getSemi ::m }instanceSemigroupm =>Semigroupoid (Semi m )whereSemi m m o :: forall (j :: k) (k :: k) (i :: k). Semi m j k -> Semi m i j -> Semi m i k `o` Semi m n =m -> Semi m i k forall {k} {k} m (a :: k) (b :: k). m -> Semi m a b Semi (m m m -> m -> m forall a. Semigroup a => a -> a -> a <>m n )instanceMonoidm =>Category(Semi m )whereid :: forall (a :: k). Semi m a a id=m -> Semi m a a forall {k} {k} m (a :: k) (b :: k). m -> Semi m a b Semi m forall a. Monoid a => a memptySemi m m . :: forall (b :: k) (c :: k) (a :: k). Semi m b c -> Semi m a b -> Semi m a c .Semi m n =m -> Semi m a c forall {k} {k} m (a :: k) (b :: k). m -> Semi m a b Semi (m m m -> m -> m forall a. Monoid a => a -> a -> a `mappend`m n )instanceSemigroupoid ConstwhereConst j k _o :: forall j k i. Const j k -> Const i j -> Const i k `o` Consti a =i -> Const i k forall {k} a (b :: k). a -> Const a b Consti a #ifdef MIN_VERSION_tagged instanceSemigroupoid TaggedwhereTaggedk b o :: forall j k i. Tagged j k -> Tagged i j -> Tagged i k `o` Tagged i j _=k -> Tagged i k forall {k} (s :: k) b. b -> Tagged s b Taggedk b #endif instanceSemigroupoid Co.Coercionwhereo :: forall (j :: k) (k :: k) (i :: k). Coercion j k -> Coercion i j -> Coercion i k o =(Coercion i j -> Coercion j k -> Coercion i k) -> Coercion j k -> Coercion i j -> Coercion i k forall a b c. (a -> b -> c) -> b -> a -> c flipCoercion i j -> Coercion j k -> Coercion i k forall {k} (a :: k) (b :: k) (c :: k). Coercion a b -> Coercion b c -> Coercion a c Co.transinstanceSemigroupoid (Eq.:~:)whereo :: forall (j :: k) (k :: k) (i :: k). (j :~: k) -> (i :~: j) -> i :~: k o =((i :~: j) -> (j :~: k) -> i :~: k) -> (j :~: k) -> (i :~: j) -> i :~: k forall a b c. (a -> b -> c) -> b -> a -> c flip(i :~: j) -> (j :~: k) -> i :~: k forall {k} (a :: k) (b :: k) (c :: k). (a :~: b) -> (b :~: c) -> a :~: c Eq.trans #if MIN_VERSION_base(4,10,0) instanceSemigroupoid (Eq.:~~:)whereo :: forall (j :: k) (k :: k) (i :: k). (j :~~: k) -> (i :~~: j) -> i :~~: k o j :~~: k Eq.HRefli :~~: j Eq.HRefl=i :~~: k i :~~: i forall {k1} (a :: k1). a :~~: a Eq.HRefl #endif