Pytorch implementation of "Fast Training of Triplet-based Deep Binary Embedding Networks". http://arxiv.org/abs/1603.02844
Feel free to contribute code.
Refactor this project.
Use code in https://github.com/kentsommer/keras-inceptionV4 to extract feature.
- Add multiclass support.
- Make code clean.
- Add more base networks.
- Add query code for new project.
- Put training pictures in
train/[category-id], test pictures indata/test. - Run
src/extract_feature/batch_extarct_test.pyandsrc/extract_feature/batch_extract_train.pyto extract feature for future use. - Run
src/hash_net/generate_random_dataset.pyto generate random training data. - Run
src/hash_net/hashNet.pyto train your triplet deep hash network.
(削除) ## Test (削除ここまで)
(削除) 1. Create folder test, and create pos, neg in test with pictures that you want to retrive. (削除ここまで)
(削除) 2. Run testQue.py to query your picture set. (削除ここまで)