Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

vvhg1/guided-text-generation-with-classifier-free-language-diffusion

Repository files navigation

Guided Text Generation with Classifier-free Language Diffusion

Author: Victor v. Hobe-Gelting

This repository builds on and is an adaptation of code from:

Diffusion-LM Improves Controllable Text Generation

Repository: https://github.com/XiangLi1999/Diffusion-LM

Paper: https://arxiv.org/pdf/2205.14217.pdf



Denoising Diffusion Probabilistic Models

Repository: https://github.com/hojonathanho/diffusion

Paper: https://arxiv.org/abs/2006.11239



Improved Denoising Diffusion Probabilistic Models

Repository: https://github.com/openai/improved-diffusion

Paper: https://arxiv.org/abs/2102.09672



Diffusion Models Beat GANS on Image Synthesis

Repository: https://github.com/openai/guided-diffusion

Paper: https://arxiv.org/abs/2105.05233



GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models

Repository: https://github.com/openai/glide-text2im

Paper: https://arxiv.org/abs/2112.10741



GLID-3

Repository: https://github.com/Jack000/glid-3



Conda Setup:

conda install -c conda-forge mpi4py
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
pip install -e improved-diffusion/
pip install -e transformers/
pip install spacy==3.2.4
pip install datasets==1.8.0
pip install huggingface_hub==0.4.0
pip install wandb

Train Diffusion-LM:

cd improved-diffusion;

python scripts/run_train.py --diff_steps 2000 --model_arch transformer --lr 0.0001 --lr_anneal_steps 400000 --save_interval 50000 --seed 101 --noise_schedule sqrt --in_channel 128 --modality roc-free --submit no --padding_mode pad --app "--predict_xstart True --training_mode e2e --vocab_size 11043 --roc_train datasets/ROCstory " --notes xstart_e2e --bsz 64


Controllable Text Generation

python scripts/infill_free.py --model_path 'diffusion_models/diff_roc-free_pad_rand128_transformer_lr0.0001_0.0_2000_sqrt_Lsimple_h128_s2_d0.1_sd101_xstart_e2e/model{model epochs}.pt' --eval_task_ 'free_emotion' --use_ddim True --notes "tree_adagrad" --eta 1. --verbose pipe


About

Exploring classifier-free guidance in a DDPM language model for text generation towards emotion targets.

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /