Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings
#

xgboost-regression

Here are 489 public repositories matching this topic...

The "House Price Prediction" project focuses on predicting housing prices using machine learning techniques. By leveraging popular Python libraries such as NumPy, Pandas, Scikit-learn (sklearn), Matplotlib, Seaborn, and XGBoost, this project provides an end-to-end solution for accurate price estimation.

  • Updated Oct 16, 2023
  • Jupyter Notebook

This repo demonstrates how to build a surrogate (proxy) model by multivariate regressing building energy consumption data (univariate and multivariate) and use (1) Bayesian framework, (2) Pyomo package, (3) Genetic algorithm with local search, and (4) Pymoo package to find optimum design parameters and minimum energy consumption.

  • Updated Mar 15, 2023
  • Jupyter Notebook

The aim of this project is to develop a solution using Data science and machine learning to predict the compressive strength of a concrete with respect to the its age and the quantity of ingredients used.

  • Updated Jun 25, 2023
  • Jupyter Notebook

Improve this page

Add a description, image, and links to the xgboost-regression topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the xgboost-regression topic, visit your repo's landing page and select "manage topics."

Learn more

AltStyle によって変換されたページ (->オリジナル) /