Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

sachin17git/Malware-detection-ML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

42 Commits

Repository files navigation

Malware-detection-ML

Android malware detection using Machine Learning.

The notebook 'main.ipynb' contains the following outlines.

  • Import modules
  • Read Data
  • Pre processing
  • Feature Selection methods
    • Variance Inflation Factor (multi-collinearity removal)
    • Mutual Information Score
  • Machine learning pipeline modelling
    • Logistic Regression
    • Support Vector Machines
    • K Nearest Neighbors
    • Random Forest
    • XGBoost
    • CatBoost
    • Voting classifier : Random forest + XGBoost + Catboost
    • Stacking classifier : Logistic regression + SVM + Knn + Random forest + XGBoost + Catboost
  • Bayesian based hyper-parameter tuning
  • ML model explainability using Shapley values

Dataset citations

  • Mathur, Akshay & Mathur, Akshay. (2022). NATICUSdroid (Android Permissions) Dataset. UCI Machine Learning Repository.

AltStyle によって変換されたページ (->オリジナル) /