Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

rudrajit1729/Machine-Learning-Codes-And-Templates

Repository files navigation

Machine-Learning-Codes-And-Templates

A step towards Data Science and Machine Learning

Codes and templates for ML algorithms created, modified and optimized in Python and R from the SuperDataScience Course by Kirill Ermenko(Data Scientist) and Hadelin de Ponteves(AI Entrepreneur).

Contains the code and implementation of the following topics and techniques:

  1. Data Preprocessing
    • Importing the dataset
    • Dealing with missing data
    • Splitting the data into test set and training set
    • Feature Scaling
  2. Regression
    • Simple Linear Regression
    • Multiple Linear Regression
    • Polynomial Linear Regression
    • Support Vector Regression (SVR)
    • Decision Tree Regression
    • Random Forest Regression
  3. Classification
    • Logistic Regression
    • K-Nearest Neighbors (K-NN)
    • Support Vector Machine (SVM)
    • Kernel SVM
    • Naive Bayes
    • Decision Tree Classifiers
    • Random Forest Classifiers
  4. Clustering
    • K-Means Clustering
    • Hierarchical Clustering
  5. Association Rule Learning
    • Apriori
    • Eclat
  6. Reinforcement Learning
    • Upper Confidence Bound(UCB)
    • Thompson Sampling
  7. Natural Language Processing
    • NLP for text analysis and classification.
  8. Deep Learning
    • Artificial Neural Networks(ANN)
    • Convolutional Neural Networks(CNN)
  9. Dimensionality Reduction
    • Principal Component Analysis(PCA)
    • Linear Discreminant Analysis(LDA)
    • Kernel PCA
  10. Model Selection & Boosting
    • Model Selection using K-Fold Cross Validation
    • Parameter Tuning using Grid Search
    • XGBoost

AltStyle によって変換されたページ (->オリジナル) /