Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

The Qualcomm® AI Hub Models are a collection of state-of-the-art machine learning models optimized for performance (latency, memory etc.) and ready to deploy on Qualcomm® devices.

License

Notifications You must be signed in to change notification settings

quic/ai-hub-models

Repository files navigation

Release Tag PyPi Python 3.9, 3.10, 3.11, 3.12

The Qualcomm® AI Hub Models are a collection of state-of-the-art machine learning models optimized for deployment on Qualcomm® devices.

See supported: On-Device Runtimes, Hardware Targets & Precision, Chipsets, Devices

Setup

1. Install Python Package

The package is available via pip:

# NOTE for Snapdragon X Elite users:
# Only AMDx64 (64-bit) Python in supported on Windows.
# Installation will fail when using Windows ARM64 Python.
pip install qai_hub_models

Some models (e.g. YOLOv7) require additional dependencies that can be installed as follows:

pip install "qai_hub_models[yolov7]"

2. Configure AI Hub Access

Many features of AI Hub Models (such as model compilation, on-device profiling, etc.) require access to Qualcomm® AI Hub:

Getting Started

Export and Run A Model on a Physical Device

All models in our directory can be compiled and profiled on a hosted Qualcomm® device:

pip install "qai_hub_models[yolov7]"
python -m qai_hub_models.models.yolov7.export [--target-runtime ...] [--device ...] [--help]

Using Qualcomm® AI Hub, the export script will:

  1. Compile the model for the chosen device and target runtime (see: Compiling Models on AI Hub).
  2. If applicable, Quantize the model (see: Quantization on AI Hub)
  3. Profile the compiled model on a real device in the cloud (see: Profiling Models on AI Hub).
  4. Run inference with a sample input data on a real device in the cloud, and compare on-device model output with PyTorch output (see: Running Inference on AI Hub)
  5. Download the compiled model to disk.

End-To-End Model Demos

Most models in our directory contain CLI demos that run the model end-to-end:

pip install "qai_hub_models[yolov7]"
# Predict and draw bounding boxes on the provided image
python -m qai_hub_models.models.yolov7.demo [--image ...] [--eval-mode {fp,on-device}] [--help]

End-to-end demos:

  1. Preprocess human-readable input into model input
  2. Run model inference
  3. Postprocess model output to a human-readable format

Many end-to-end demos use AI Hub to run inference on a real cloud-hosted device (with --eval-mode on-device). All end-to-end demos can also run locally via PyTorch (with --eval-mode fp).

Sample Applications

Native applications that can run our models (with pre- and post-processing) on physical devices are published in the AI Hub Apps repository.

Python applications are defined for all models (from qai_hub_models.models.<model_name> import App). These apps wrap model inference with pre- and post-processing steps written using torch & numpy. These apps are optimized to be an easy-to-follow example, rather than to minimize prediction time.

Model Support Data

On-Device Runtimes

Runtime Supported OS
Qualcomm AI Engine Direct Android, Linux, Windows
LiteRT (TensorFlow Lite) Android, Linux
ONNX Android, Linux, Windows

Device Hardware & Precision

Device Compute Unit Supported Precision
CPU FP32, INT16, INT8
GPU FP32, FP16
NPU (includes Hexagon DSP, HTP) FP16*, INT16, INT8

*Some older chipsets do not support fp16 inference on their NPU.

Chipsets

and many more.

Devices

  • Samsung Galaxy S21, S22, S23, and S24 Series
  • Xiaomi 12 and 13
  • Snapdragon X Elite CRD (Compute Reference Device)
  • Qualcomm RB3 Gen 2, RB5

and many more.

Model Directory

Computer Vision

Model README
Image Classification
Beit qai_hub_models.models.beit
ConvNext-Base qai_hub_models.models.convnext_base
ConvNext-Tiny qai_hub_models.models.convnext_tiny
DLA-102-X qai_hub_models.models.dla102x
DenseNet-121 qai_hub_models.models.densenet121
EfficientFormer qai_hub_models.models.efficientformer
EfficientNet-B0 qai_hub_models.models.efficientnet_b0
EfficientNet-B4 qai_hub_models.models.efficientnet_b4
EfficientNet-V2-s qai_hub_models.models.efficientnet_v2_s
EfficientViT-b2-cls qai_hub_models.models.efficientvit_b2_cls
EfficientViT-l2-cls qai_hub_models.models.efficientvit_l2_cls
GPUNet qai_hub_models.models.gpunet
GoogLeNet qai_hub_models.models.googlenet
Inception-v3 qai_hub_models.models.inception_v3
LeViT qai_hub_models.models.levit
MNASNet05 qai_hub_models.models.mnasnet05
Mobile-VIT qai_hub_models.models.mobile_vit
MobileNet-v2 qai_hub_models.models.mobilenet_v2
MobileNet-v3-Large qai_hub_models.models.mobilenet_v3_large
MobileNet-v3-Small qai_hub_models.models.mobilenet_v3_small
NASNet qai_hub_models.models.nasnet
RegNet qai_hub_models.models.regnet
RegNet-Y-800MF qai_hub_models.models.regnet_y_800mf
ResNeXt101 qai_hub_models.models.resnext101
ResNeXt50 qai_hub_models.models.resnext50
ResNet101 qai_hub_models.models.resnet101
ResNet18 qai_hub_models.models.resnet18
ResNet50 qai_hub_models.models.resnet50
Sequencer2D qai_hub_models.models.sequencer2d
Shufflenet-v2 qai_hub_models.models.shufflenet_v2
SqueezeNet-1.1 qai_hub_models.models.squeezenet1_1
Swin-Base qai_hub_models.models.swin_base
Swin-Small qai_hub_models.models.swin_small
Swin-Tiny qai_hub_models.models.swin_tiny
VIT qai_hub_models.models.vit
WideResNet50 qai_hub_models.models.wideresnet50
Image Editing
AOT-GAN qai_hub_models.models.aotgan
DDColor qai_hub_models.models.ddcolor
LaMa-Dilated qai_hub_models.models.lama_dilated
Super Resolution
ESRGAN qai_hub_models.models.esrgan
QuickSRNetLarge qai_hub_models.models.quicksrnetlarge
QuickSRNetMedium qai_hub_models.models.quicksrnetmedium
QuickSRNetSmall qai_hub_models.models.quicksrnetsmall
Real-ESRGAN-General-x4v3 qai_hub_models.models.real_esrgan_general_x4v3
Real-ESRGAN-x4plus qai_hub_models.models.real_esrgan_x4plus
SESR-M5 qai_hub_models.models.sesr_m5
XLSR qai_hub_models.models.xlsr
Semantic Segmentation
BGNet qai_hub_models.models.bgnet
BiseNet qai_hub_models.models.bisenet
DDRNet23-Slim qai_hub_models.models.ddrnet23_slim
DeepLabV3-Plus-MobileNet qai_hub_models.models.deeplabv3_plus_mobilenet
DeepLabV3-ResNet50 qai_hub_models.models.deeplabv3_resnet50
DeepLabXception qai_hub_models.models.deeplab_xception
EfficientViT-l2-seg qai_hub_models.models.efficientvit_l2_seg
FCN-ResNet50 qai_hub_models.models.fcn_resnet50
FFNet-122NS-LowRes qai_hub_models.models.ffnet_122ns_lowres
FFNet-40S qai_hub_models.models.ffnet_40s
FFNet-54S qai_hub_models.models.ffnet_54s
FFNet-78S qai_hub_models.models.ffnet_78s
FFNet-78S-LowRes qai_hub_models.models.ffnet_78s_lowres
FastSam-S qai_hub_models.models.fastsam_s
FastSam-X qai_hub_models.models.fastsam_x
HRNet-W48-OCR qai_hub_models.models.hrnet_w48_ocr
Mask2Former qai_hub_models.models.mask2former
MediaPipe-Selfie-Segmentation qai_hub_models.models.mediapipe_selfie
MobileSam qai_hub_models.models.mobilesam
PidNet qai_hub_models.models.pidnet
SINet qai_hub_models.models.sinet
SalsaNext qai_hub_models.models.salsanext
Segformer-Base qai_hub_models.models.segformer_base
Segment-Anything-Model-2 qai_hub_models.models.sam2
Unet-Segmentation qai_hub_models.models.unet_segmentation
YOLOv11-Segmentation qai_hub_models.models.yolov11_seg
YOLOv8-Segmentation qai_hub_models.models.yolov8_seg
Video Classification
ResNet-2Plus1D qai_hub_models.models.resnet_2plus1d
ResNet-3D qai_hub_models.models.resnet_3d
ResNet-Mixed-Convolution qai_hub_models.models.resnet_mixed
Video-MAE qai_hub_models.models.video_mae
Video Generation
First-Order-Motion-Model qai_hub_models.models.fomm
Video Object Tracking
Track-Anything qai_hub_models.models.track_anything
Object Detection
3D-Deep-BOX qai_hub_models.models.deepbox
Conditional-DETR-ResNet50 qai_hub_models.models.conditional_detr_resnet50
DETR-ResNet101 qai_hub_models.models.detr_resnet101
DETR-ResNet101-DC5 qai_hub_models.models.detr_resnet101_dc5
DETR-ResNet50 qai_hub_models.models.detr_resnet50
DETR-ResNet50-DC5 qai_hub_models.models.detr_resnet50_dc5
Facial-Attribute-Detection qai_hub_models.models.face_attrib_net
Lightweight-Face-Detection qai_hub_models.models.face_det_lite
MediaPipe-Face-Detection qai_hub_models.models.mediapipe_face
MediaPipe-Hand-Detection qai_hub_models.models.mediapipe_hand
PPE-Detection qai_hub_models.models.gear_guard_net
Person-Foot-Detection qai_hub_models.models.foot_track_net
RF-DETR qai_hub_models.models.rf_detr
RTMDet qai_hub_models.models.rtmdet
YOLOv10-Detection qai_hub_models.models.yolov10_det
YOLOv11-Detection qai_hub_models.models.yolov11_det
YOLOv8-Detection qai_hub_models.models.yolov8_det
Yolo-X qai_hub_models.models.yolox
Yolo-v3 qai_hub_models.models.yolov3
Yolo-v5 qai_hub_models.models.yolov5
Yolo-v6 qai_hub_models.models.yolov6
Yolo-v7 qai_hub_models.models.yolov7
Pose Estimation
Facial-Landmark-Detection qai_hub_models.models.facemap_3dmm
HRNetPose qai_hub_models.models.hrnet_pose
LiteHRNet qai_hub_models.models.litehrnet
MediaPipe-Pose-Estimation qai_hub_models.models.mediapipe_pose
Movenet qai_hub_models.models.movenet
Posenet-Mobilenet qai_hub_models.models.posenet_mobilenet
RTMPose-Body2d qai_hub_models.models.rtmpose_body2d
Depth Estimation
Depth-Anything qai_hub_models.models.depth_anything
Depth-Anything-V2 qai_hub_models.models.depth_anything_v2
Midas-V2 qai_hub_models.models.midas

Multimodal

Model README
EasyOCR qai_hub_models.models.easyocr
Nomic-Embed-Text qai_hub_models.models.nomic_embed_text
OpenAI-Clip qai_hub_models.models.openai_clip
TrOCR qai_hub_models.models.trocr

Audio

Model README
Speech Recognition
HuggingFace-WavLM-Base-Plus qai_hub_models.models.huggingface_wavlm_base_plus
Whisper-Base qai_hub_models.models.whisper_base
Whisper-Large-V3-Turbo qai_hub_models.models.whisper_large_v3_turbo
Whisper-Small qai_hub_models.models.whisper_small
Whisper-Small-Quantized qai_hub_models.models.whisper_small_quantized
Whisper-Tiny qai_hub_models.models.whisper_tiny
Audio Classification
YamNet qai_hub_models.models.yamnet

Generative AI

Model README
Image Generation
ControlNet-Canny qai_hub_models.models.controlnet_canny
Stable-Diffusion-v1.5 qai_hub_models.models.stable_diffusion_v1_5
Stable-Diffusion-v2.1 qai_hub_models.models.stable_diffusion_v2_1
Text Generation
Baichuan2-7B qai_hub_models.models.baichuan2_7b
Falcon3-7B-Instruct qai_hub_models.models.falcon_v3_7b_instruct
IBM-Granite-v3.1-8B-Instruct qai_hub_models.models.ibm_granite_v3_1_8b_instruct
IndusQ-1.1B qai_hub_models.models.indus_1b
JAIS-6p7b-Chat qai_hub_models.models.jais_6p7b_chat
Llama-SEA-LION-v3.5-8B-R qai_hub_models.models.llama_v3_1_sea_lion_3_5_8b_r
Llama-v2-7B-Chat qai_hub_models.models.llama_v2_7b_chat
Llama-v3-8B-Instruct qai_hub_models.models.llama_v3_8b_instruct
Llama-v3.1-8B-Instruct qai_hub_models.models.llama_v3_1_8b_instruct
Llama-v3.2-1B-Instruct qai_hub_models.models.llama_v3_2_1b_instruct
Llama-v3.2-3B-Instruct qai_hub_models.models.llama_v3_2_3b_instruct
Llama3-TAIDE-LX-8B-Chat-Alpha1 qai_hub_models.models.llama_v3_taide_8b_chat
Ministral-3B qai_hub_models.models.ministral_3b
Mistral-3B qai_hub_models.models.mistral_3b
Mistral-7B-Instruct-v0.3 qai_hub_models.models.mistral_7b_instruct_v0_3
PLaMo-1B qai_hub_models.models.plamo_1b
Phi-3.5-Mini-Instruct qai_hub_models.models.phi_3_5_mini_instruct
Qwen2-7B-Instruct qai_hub_models.models.qwen2_7b_instruct
Qwen2.5-7B-Instruct qai_hub_models.models.qwen2_5_7b_instruct

Need help?

Slack: https://aihub.qualcomm.com/community/slack

GitHub Issues: https://github.com/quic/ai-hub-models/issues

Email: ai-hub-support@qti.qualcomm.com.

LICENSE

Qualcomm® AI Hub Models is licensed under BSD-3. See the LICENSE file.

About

The Qualcomm® AI Hub Models are a collection of state-of-the-art machine learning models optimized for performance (latency, memory etc.) and ready to deploy on Qualcomm® devices.

Topics

Resources

License

Stars

Watchers

Forks

Languages

AltStyle によって変換されたページ (->オリジナル) /