Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

pytorch/executorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Repository files navigation

ExecuTorch logo mark

ExecuTorch

On-device AI inference powered by PyTorch

ExecuTorch is PyTorch's unified solution for deploying AI models on-device—from smartphones to microcontrollers—built for privacy, performance, and portability. It powers Meta's on-device AI across Instagram, WhatsApp, Quest 3, Ray-Ban Meta Smart Glasses, and more.

Deploy LLMs, vision, speech, and multimodal models with the same PyTorch APIs you already know—accelerating research to production with seamless model export, optimization, and deployment. No manual C++ rewrites. No format conversions. No vendor lock-in.

📘 Table of Contents

Why ExecuTorch?

  • 🔒 Native PyTorch Export — Direct export from PyTorch. No .onnx, .tflite, or intermediate format conversions. Preserve model semantics.
  • ⚡ Production-Proven — Powers billions of users at Meta with real-time on-device inference.
  • 💾 Tiny Runtime — 50KB base footprint. Runs on microcontrollers to high-end smartphones.
  • 🚀 12+ Hardware Backends — Open-source acceleration for Apple, Qualcomm, ARM, MediaTek, Vulkan, and more.
  • 🎯 One Export, Multiple Backends — Switch hardware targets with a single line change. Deploy the same model everywhere.

How It Works

ExecuTorch uses ahead-of-time (AOT) compilation to prepare PyTorch models for edge deployment:

  1. 🧩 Export — Capture your PyTorch model graph with torch.export()
  2. ⚙️ Compile — Quantize, optimize, and partition to hardware backends → .pte
  3. 🚀 Execute — Load .pte on-device via lightweight C++ runtime

Models use a standardized Core ATen operator set. Partitioners delegate subgraphs to specialized hardware (NPU/GPU) with CPU fallback.

Learn more: How ExecuTorch WorksArchitecture Guide

Quick Start

Installation

pip install executorch

For platform-specific setup (Android, iOS, embedded systems), see the Quick Start documentation for additional info.

Export and Deploy in 3 Steps

import torch
from executorch.exir import to_edge_transform_and_lower
from executorch.backends.xnnpack.partition.xnnpack_partitioner import XnnpackPartitioner
# 1. Export your PyTorch model
model = MyModel().eval()
example_inputs = (torch.randn(1, 3, 224, 224),)
exported_program = torch.export.export(model, example_inputs)
# 2. Optimize for target hardware (switch backends with one line)
program = to_edge_transform_and_lower(
 exported_program,
 partitioner=[XnnpackPartitioner()] # CPU | CoreMLPartitioner() for iOS | QnnPartitioner() for Qualcomm
).to_executorch()
# 3. Save for deployment
with open("model.pte", "wb") as f:
 f.write(program.buffer)
# Test locally via ExecuTorch runtime's pybind API (optional)
from executorch.runtime import Runtime
runtime = Runtime.get()
method = runtime.load_program("model.pte").load_method("forward")
outputs = method.execute([torch.randn(1, 3, 224, 224)])

Run on Device

C++

#include <executorch/extension/module/module.h>
#include <executorch/extension/tensor/tensor.h>
Module module("model.pte");
auto tensor = make_tensor_ptr({2, 2}, {1.0f, 2.0f, 3.0f, 4.0f});
auto outputs = module.forward(tensor);

Swift (iOS)

import ExecuTorch
let module = Module(filePath: "model.pte")
let input = Tensor<Float>([1.0, 2.0, 3.0, 4.0], shape: [2, 2])
let outputs = try module.forward(input)

Kotlin (Android)

val module = Module.load("model.pte")
val inputTensor = Tensor.fromBlob(floatArrayOf(1.0f, 2.0f, 3.0f, 4.0f), longArrayOf(2, 2))
val outputs = module.forward(EValue.from(inputTensor))

LLM Example: Llama

Export Llama models using the export_llm script or Optimum-ExecuTorch:

# Using export_llm
python -m executorch.extension.llm.export.export_llm --model llama3_2 --output llama.pte
# Using Optimum-ExecuTorch
optimum-cli export executorch \
 --model meta-llama/Llama-3.2-1B \
 --task text-generation \
 --recipe xnnpack \
 --output_dir llama_model

Run on-device with the LLM runner API:

C++

#include <executorch/extension/llm/runner/text_llm_runner.h>
auto runner = create_llama_runner("llama.pte", "tiktoken.bin");
executorch::extension::llm::GenerationConfig config{
 .seq_len = 128, .temperature = 0.8f};
runner->generate("Hello, how are you?", config);

Swift (iOS)

import ExecuTorchLLM
let runner = TextRunner(modelPath: "llama.pte", tokenizerPath: "tiktoken.bin")
try runner.generate("Hello, how are you?", Config {
 0ドル.sequenceLength = 128
}) { token in
 print(token, terminator: "")
}

Kotlin (Android)API DocsDemo App

val llmModule = LlmModule("llama.pte", "tiktoken.bin", 0.8f)
llmModule.load()
llmModule.generate("Hello, how are you?", 128, object : LlmCallback {
 override fun onResult(result: String) { print(result) }
 override fun onStats(stats: String) { }
})

For multimodal models (vision, audio), use the MultiModal runner API which extends the LLM runner to handle image and audio inputs alongside text. See Llava and Voxtral examples.

See examples/models/llama for complete workflow including quantization, mobile deployment, and advanced options.

Next Steps:

Platform & Hardware Support

Platform Supported Backends
Android XNNPACK, Vulkan, Qualcomm, MediaTek, Samsung Exynos
iOS XNNPACK, MPS, CoreML (Neural Engine)
Linux / Windows XNNPACK, OpenVINO, CUDA (experimental)
macOS XNNPACK, MPS, Metal (experimental)
Embedded / MCU XNNPACK, ARM Ethos-U, NXP, Cadence DSP

See Backend Documentation for detailed hardware requirements and optimization guides.

Production Deployments

ExecuTorch powers on-device AI at scale across Meta's family of apps, VR/AR devices, and partner deployments. View success stories →

Examples & Models

LLMs: Llama 3.2/3.1/3, Qwen 3, Phi-4-mini, LiquidAI LFM2

Multimodal: Llava (vision-language), Voxtral (audio-language), Gemma (vision-language)

Vision/Speech: MobileNetV2, DeepLabV3, Whisper

Resources: examples/ directory • executorch-examples out-of-tree demos • Optimum-ExecuTorch for HuggingFace models

Key Features

ExecuTorch provides advanced capabilities for production deployment:

  • Quantization — Built-in support via torchao for 8-bit, 4-bit, and dynamic quantization
  • Memory Planning — Optimize memory usage with ahead-of-time allocation strategies
  • Developer Tools — ETDump profiler, ETRecord inspector, and model debugger
  • Selective Build — Strip unused operators to minimize binary size
  • Custom Operators — Extend with domain-specific kernels
  • Dynamic Shapes — Support variable input sizes with bounded ranges

See Advanced Topics for quantization techniques, custom backends, and compiler passes.

Documentation

Community & Contributing

We welcome contributions from the community!

License

ExecuTorch is BSD licensed, as found in the LICENSE file.




Part of the PyTorch ecosystem

GitHubDocumentation

About

On-device AI across mobile, embedded and edge for PyTorch

Topics

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /