Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

ml-processing-backbone/batch-processing-boilerplate

Repository files navigation

airflow-sandbox

It is easy to create apache airflow DAGs, but it is really hard to create meaningful architectures w/ Airflow.

  1. airflow-sandbox : meaningful scenario w/ GCP Cloud Composer
  2. airflow-sandbox/core : fundamentals of airflow

How To Start

  1. Create environment w/

    • conda create -n airflow-sandbox python=3.7 anaconda
    • conda activate airflow-sandbox
  2. Install airflow packages

    • pip install apache-airflow[async,crypto,jdbc,gcp_api,google_auth]
  3. Start airflow on your local

    • airflow initdb
    • ls ~/airflow
    • mkdir ~/airflow/dags
    • airflow webserver -p 8080
    • airflow scheduler
    • Open localhost:8080 in your web browser
  4. Copy dag files into dags folder like cp basic-dag.py ~/airflow/dags

  5. To test the dag

    • airflow list_dags
    • airflow list_tasks my_first_dag_v2
    • airflow test my_first_dag_v2 print_hello 2019年05月22日

High Level Architecture - /product-analytics

Image

About

Boilerplate for batch-processing scenarios' orchestration. Apache Airflow w/ realistic product analytics use case

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /