Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Real-time object detection of microcontrollers and sensors (ESP32, Arduino, DS18B20, etc.) using ESP32-CAM and Edge Impulse. Ideal for smart inventory, embedded demos, and edge AI applications.

Notifications You must be signed in to change notification settings

kartikvd24/Object-detection-using-ESP32-CAM-and-Edge-impulse

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

2 Commits

Repository files navigation

πŸ“¦ obj_dec – Microcontroller & Sensor Detection using Object Detection (YOLO-style) on Edge Devices

This project detects and classifies different integrated circuits (ICs), microcontrollers, and sensors using bounding boxes and a camera-based object detection model. Built using Edge Impulse, this system is perfect for lab inventory automation, educational demonstrations, or embedded vision systems.

πŸ”— Live Project on Edge Impulse


🧠 What It Detects

The object detection model can recognize the following components from an image:

🧩 Component Description
ESP32 Generic microcontroller board
ESP32-CAM Camera-enabled ESP32 module
Arduino Uno Popular dev board by Arduino
DS18B20 Digital waterproof temperature sensor
LoRa SX1278 LoRa transceiver module
Others (Optional) Add more via training data

🎯 Project Features

  • πŸ“· Real-time object detection with bounding boxes
  • πŸ’» Runs on edge devices: ESP32-CAM, Raspberry Pi, or Linux with webcam
  • πŸ“¦ Trained using Edge Impulse Object Detection pipeline
  • πŸ§ͺ Useful for:
    • Smart inventory systems
    • Educational electronics demos
    • Component detection in robotics kits

πŸ”§ Hardware Requirements

Component Role
ESP32-CAM Captures images and runs detection
Raspberry Pi Alternative platform for model inference
Webcam For PC testing using Edge Impulse runner

🧠 Model Details

Feature Value
Input size 320x320 RGB image
Model Type Object Detection (FOMO / YOLO-lite)
Classes esp32, esp32_cam, arduino_uno, ds18b20, lora_sx1278
Training Tool Edge Impulse Studio
Deployment Format .eim (Linux), Arduino lib (ESP32-CAM)

πŸ“Š Accuracy: Replace with your actual validation accuracy
πŸ“‰ Loss: Replace with your loss value from training


πŸš€ How to Run

πŸ–₯️ Test with Edge Impulse CLI + Webcam

edge-impulse-linux-runner --clean --camera

This opens your webcam and classifies live video frames with bounding boxes.

πŸ“· Run on ESP32-CAM

  1. Export the project as an Arduino library from Edge Impulse
  2. Open Arduino IDE β†’ Install the library β†’ Use example sketch
  3. Upload it to ESP32-CAM
  4. Open the Serial Monitor or connect to the streaming IP to see results

πŸ§ͺ Example Results

Add a few screenshots or sample image files in the /images/ folder showing bounding boxes around each component like ESP32, Arduino Uno, etc.

Example:

πŸ“Έ Detected: ESP32-CAM [Box: x=34, y=48, w=90, h=100, Score: 0.92]

πŸ“‚ Project Structure

obj_dec/
β”œβ”€β”€ model/ # Exported .eim model files
β”œβ”€β”€ esp32-cam/ # Arduino code for ESP32-CAM inference
β”œβ”€β”€ images/ # Screenshots of detections
β”œβ”€β”€ data/ # Sample training images (optional)
└── README.md # Project documentation (this file)

πŸ“ˆ Future Plans

  • Add support for more components (e.g., NodeMCU, Raspberry Pi Pico, sensors)
  • Improve detection in poor lighting/angles
  • Add real-time alert system via Blynk/Firebase
  • Optimize model size for faster performance on ESP32

🀝 Contributing

Want to improve or contribute?

git clone https://github.com/kartikd/obj_dec.git
  • Submit PRs to add new images or boards
  • Improve model performance
  • Enhance Arduino streaming features

πŸ“„ License

Licensed under the Apache 2.0 License


Created with πŸ’‘ by Kartik D using Edge Impulse + embedded vision πŸš€

About

Real-time object detection of microcontrollers and sensors (ESP32, Arduino, DS18B20, etc.) using ESP32-CAM and Edge Impulse. Ideal for smart inventory, embedded demos, and edge AI applications.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

AltStyle γ«γ‚ˆγ£γ¦ε€‰ζ›γ•γ‚ŒγŸγƒšγƒΌγ‚Έ (->γ‚ͺγƒͺγ‚ΈγƒŠγƒ«) /