travis-ci.org coveralls.io latest version license
This is a Python binding of the OLL library for machine learning.
Currently, OLL 0.03 supports following binary classification algorithms:
- Perceptron
- Averaged Perceptron
- Passive Agressive (PA, PA-I, PA-II, Kernelized)
- ALMA (modified slightly from original)
- Confidence Weighted Linear-Classification.
For details of oll, see: http://code.google.com/p/oll
$ pip install oll
OLL library is bundled, so you don't need to install it separately.
import oll # You can choose algorithms in # "P" -> Perceptron, # "AP" -> Averaged Perceptron, # "PA" -> Passive Agressive, # "PA1" -> Passive Agressive-I, # "PA2" -> Passive Agressive-II, # "PAK" -> Kernelized Passive Agressive, # "CW" -> Confidence Weighted Linear-Classification, # "AL" -> ALMA o = oll.oll("CW", C=1.0, bias=0.0) o.add({0: 1.0, 1: 2.0, 2: -1.0}, 1) # train o.classify({0:1.0, 1:1.0}) # predict o.save('oll.model') o.load('oll.model') # scikit-learn like fit/predict interface import numpy as np array = np.array([[1, 2, -1], [0, 0, 1]]) o.fit(array, [1, -1]) o.predict(np.array([[1, 2, -1], [0, 0, 1]])) # => [1, -1] from scipy.sparse import csr_matrix matrix = csr_matrix([[1, 2, -1], [0, 0, 1]]) o.fit(matrix, [1, -1]) o.predict(matrix) # => [1, -1] # Multi label classification import time import oll from sklearn.multiclass import OutputCodeClassifier from sklearn import datasets, cross_validation, metrics dataset = datasets.load_digits() ALGORITHMS = ("P", "AP", "PA", "PA1", "PA2", "PAK", "CW", "AL") for algorithm in ALGORITHMS: print(algorithm) occ_predicts = [] expected = [] start = time.time() for (train_idx, test_idx) in cross_validation.StratifiedKFold(dataset.target, n_folds=10, shuffle=True): clf = OutputCodeClassifier(oll.oll(algorithm)) clf.fit(dataset.data[train_idx], dataset.target[train_idx]) occ_predicts += list(clf.predict(dataset.data[test_idx])) expected += list(dataset.target[test_idx]) print('Elapsed time: %s' % (time.time() - start)) print('Accuracy', metrics.accuracy_score(expected, occ_predicts)) # => P # => Elapsed time: 109.82188701629639 # => Accuracy 0.770172509738 # => AP # => Elapsed time: 111.42936396598816 # => Accuracy 0.760155815248 # => PA # => Elapsed time: 110.95964503288269 # => Accuracy 0.74735670562 # => PA1 # => Elapsed time: 111.39844799041748 # => Accuracy 0.806343906511 # => PA2 # => Elapsed time: 115.12716913223267 # => Accuracy 0.766277128548 # => PAK # => Elapsed time: 119.53838682174683 # => Accuracy 0.77796327212 # => CW # => Elapsed time: 121.20785689353943 # => Accuracy 0.771285475793 # => AL # => Elapsed time: 116.52497220039368 # => Accuracy 0.785754034502
- This module requires C++ compiler to build.
- oll.cpp & oll.hpp : Copyright (c) 2011, Daisuke Okanohara
- oll_swig_wrap.cxx is generated based on 'oll_swig.i' in oll-ruby (https://github.com/syou6162/oll-ruby)
New BSD License.