Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

ikegami-yukino/oll-python

Repository files navigation

oll-python

travis-ci.org coveralls.io latest version license

This is a Python binding of the OLL library for machine learning.

Currently, OLL 0.03 supports following binary classification algorithms:

  • Perceptron
  • Averaged Perceptron
  • Passive Agressive (PA, PA-I, PA-II, Kernelized)
  • ALMA (modified slightly from original)
  • Confidence Weighted Linear-Classification.

For details of oll, see: http://code.google.com/p/oll

Installation

$ pip install oll

OLL library is bundled, so you don't need to install it separately.

Usage

import oll
# You can choose algorithms in
# "P" -> Perceptron,
# "AP" -> Averaged Perceptron,
# "PA" -> Passive Agressive,
# "PA1" -> Passive Agressive-I,
# "PA2" -> Passive Agressive-II,
# "PAK" -> Kernelized Passive Agressive,
# "CW" -> Confidence Weighted Linear-Classification,
# "AL" -> ALMA
o = oll.oll("CW", C=1.0, bias=0.0)
o.add({0: 1.0, 1: 2.0, 2: -1.0}, 1) # train
o.classify({0:1.0, 1:1.0}) # predict
o.save('oll.model')
o.load('oll.model')
# scikit-learn like fit/predict interface
import numpy as np
array = np.array([[1, 2, -1], [0, 0, 1]])
o.fit(array, [1, -1])
o.predict(np.array([[1, 2, -1], [0, 0, 1]]))
# => [1, -1]
from scipy.sparse import csr_matrix
matrix = csr_matrix([[1, 2, -1], [0, 0, 1]])
o.fit(matrix, [1, -1])
o.predict(matrix)
# => [1, -1]
# Multi label classification
import time
import oll
from sklearn.multiclass import OutputCodeClassifier
from sklearn import datasets, cross_validation, metrics
dataset = datasets.load_digits()
ALGORITHMS = ("P", "AP", "PA", "PA1", "PA2", "PAK", "CW", "AL")
for algorithm in ALGORITHMS:
 print(algorithm)
 occ_predicts = []
 expected = []
 start = time.time()
 for (train_idx, test_idx) in cross_validation.StratifiedKFold(dataset.target,
 n_folds=10, shuffle=True):
 clf = OutputCodeClassifier(oll.oll(algorithm))
 clf.fit(dataset.data[train_idx], dataset.target[train_idx])
 occ_predicts += list(clf.predict(dataset.data[test_idx]))
 expected += list(dataset.target[test_idx])
 print('Elapsed time: %s' % (time.time() - start))
 print('Accuracy', metrics.accuracy_score(expected, occ_predicts))
# => P
# => Elapsed time: 109.82188701629639
# => Accuracy 0.770172509738
# => AP
# => Elapsed time: 111.42936396598816
# => Accuracy 0.760155815248
# => PA
# => Elapsed time: 110.95964503288269
# => Accuracy 0.74735670562
# => PA1
# => Elapsed time: 111.39844799041748
# => Accuracy 0.806343906511
# => PA2
# => Elapsed time: 115.12716913223267
# => Accuracy 0.766277128548
# => PAK
# => Elapsed time: 119.53838682174683
# => Accuracy 0.77796327212
# => CW
# => Elapsed time: 121.20785689353943
# => Accuracy 0.771285475793
# => AL
# => Elapsed time: 116.52497220039368
# => Accuracy 0.785754034502

Note

  • This module requires C++ compiler to build.
  • oll.cpp & oll.hpp : Copyright (c) 2011, Daisuke Okanohara
  • oll_swig_wrap.cxx is generated based on 'oll_swig.i' in oll-ruby (https://github.com/syou6162/oll-ruby)

License

New BSD License.

About

Online machine learning algorithms (based on OLL C++ library)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

AltStyle によって変換されたページ (->オリジナル) /