Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

hanyoseob/pytorch-CycleGAN

Repository files navigation

CycleGAN

Title

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Abstract

Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples. Our goal is to learn a mapping G:X→Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping F:Y→X and introduce a cycle consistency loss to push F(G(X))≈X (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.

alt text

Train

$ python main.py --mode train \
 --scope [scope name] \
 --name_data [data name] \
 --dir_data [data directory] \
 --dir_log [log directory] \
 --dir_checkpoint [checkpoint directory]
 --gpu_ids [gpu id; '-1': no gpu, '0, 1, ..., N-1': gpus]

$ python main.py --mode train \
 --scope cyclegan \
 --name_data monet2photo \
 --dir_data ./datasets \
 --dir_log ./log \
 --dir_checkpoint ./checkpoint
 --gpu_ids 0
  • Set [scope name] uniquely.
  • To understand hierarchy of directories based on their arguments, see directories structure below.
  • Hyperparameters were written to arg.txt under the [log directory].

Test

$ python main.py --mode test \
 --scope [scope name] \
 --name_data [data name] \
 --dir_data [data directory] \
 --dir_log [log directory] \
 --dir_checkpoint [checkpoint directory] \
 --dir_result [result directory]
 --gpu_ids [gpu id; '-1': no gpu, '0, 1, ..., N-1': gpus]

$ python main.py --mode test \
 --scope cyclegan \
 --name_data monet2photo \
 --dir_data ./datasets \
 --dir_log ./log \
 --dir_checkpoint ./checkpoints \
 --dir_result ./results
 --gpu_ids 0
  • To test using trained network, set [scope name] defined in the train phase.
  • index.html is also generated to display the generated images.
  • Generated images are saved in the images subfolder along with [result directory] folder.

Tensorboard

$ tensorboard --logdir [log directory]/[scope name]/[data name] \
 --port [(optional) 4 digit port number]

$ tensorboard --logdir ./log/cyclegan/monet2photo \
 --port 6006

After the above comment executes, go http://localhost:6006

  • You can change [(optional) 4 digit port number].
  • Default 4 digit port number is 6006.

Results

alt text

1st row: input-monet (domain A)
2nd row: output-photo (domain B)

alt text

1st row: input-photo (domain B)
2nd row: output-monet (domain A)
  • The results were generated by a network trained with monet2photo dataset during 260 epochs.
  • After the Test phase runs, execute display_result.py to display the figure.

Directories structure

pytorch-CycleGAN
+---[dir_checkpoint]
| \---[scope]
| \---[name_data]
| +---model_epoch00000.pth
| | ...
| \---model_epoch12345.pth
+---[dir_data]
| \---[name_data]
| +---testA
| | +---00000.png
| | | ...
| | \---12345.png
| +---testB
| | +---00000.png
| | | ...
| | \---12345.png
| +---trainA
| | +---00000.png
| | | ...
| | \---12345.png
| \---trainB
| +---00000.png
| | ...
| \---12345.png
+---[dir_log]
| \---[scope]
| \---[name_data]
| +---arg.txt
| \---events.out.tfevents
\---[dir_result]
 \---[scope]
 \---[name_data]
 +---images
 | +---00000-input_a.png
 | +---00000-input_b.png
 | +---00000-output_a.png
 | +---00000-output_b.png
 | +---00000-recon_a.png
 | +---00000-recon_b.png
 | | ...
 | +---12345-input_a.png
 | +---12345-input_b.png
 | +---12345-output_a.png
 | +---12345-output_b.png
 | +---12345-recon_a.png
 | +---12345-recon_b.png
 \---index.html

pytorch-CycleGAN
+---checkpoints
| \---cyclegan
| \---monet2photo
| +---model_epoch0000.pth
| | ...
| \---model_epoch0260.pth
+---datasets
| \---monet2photo
| +---testA
| | +---00010.jpg
| | | ...
| | \---01330.jpg
| +---testB
| | +---2014年08月01日 17_41_55.jpg
| | | ...
| | \---2015年04月30日 23_43_35.jpg
| +---trainA
| | +---00001.jpg
| | | ...
| | \---01337.jpg
| \---trainB
| +---2013年11月08日 16_45_24.jpg
| | ...
| \---2017年01月03日 09_45_13.jpg
+---log
| \---cyclegan
| \---monet2photo
| +---arg.txt
| \---events.out.tfevents
\---results
 \---cyclegan
 \---monet2photo
 +---images
 | +---0000-input_a.png
 | +---0000-input_b.png
 | +---0000-output_a.png
 | +---0000-output_b.png
 | +---0000-recon_a.png
 | +---0000-recon_b.png
 | | ...
 | +---0120-input_a.png
 | +---0120-input_b.png
 | +---0120-output_a.png
 | +---0120-output_b.png
 | +---0120-recon_a.png
 | +---0120-recon_b.png
 \---index.html
  • Above directory is created by setting arguments when main.py is executed.

About

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /