Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

gkxiao/virtual-screening-validation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

92 Commits

Repository files navigation

Performance

  1. Chaput2016.csv[1]
  2. Data set: DUDE

    Metric: BEDROC (alpha=80.5)

    Software: GOLD,Glide, Surflex and FlexX

  3. Cleves2020.csv[2]
  4. Data set: DUDE+

    Metric: ROC AUC and ER 1%

    Software: Dock, Glide and Surflex

  5. Eberhardt2021.csv[3]
  6. Data set: DUDE

    Metric: ROC AUC, BEDROC (alpha=20), EF at 1%, 5% and 10%

    Software: AutoDock 1.2

  7. Mysinger2012.csv[4]
  8. Data set: DUDE

    Metric: ROC AUC, logAUC and EF at 1%

    Software: DOCK

  9. Wang2019.csv[6]
  10. Data set: DUDE

    Metric: ROC AUC and BEDROC (alpha=80.5)

    Software: GLIDE

  11. Jiang2020.xlsx[10]
  12. Data set: DUDE

    Metric: ROC AUC, BEDROC (alpha=20.0,80.5,321.0) and EF at 0.5%, 1%, 2%, 8%, 20%

    Software: AutoPH4

  13. Cleves2019.csv[12]
  14. Data set: DUDE

    Metric: ROC AUC

    Software: Surflex eSim(-pscreen), maximum AUC over the alternate methods

  15. Koes2014.csv[13]
  16. Data set: DUDE

    Metric: ROC AUC and BEDROC

    Software: USR, ROCS and VAMS

  17. Puertas-Martín2019.csv[14]
  18. Data set: DUDE

    Metric: ROC AUC

    Software: OptiPharm and WEGA

  19. Shen2020.xlsx[15]
  20. Data set: DUDE, DEKOIS2.0, dataset III

    Metric: ROC AUC, logAUC, BEDROC(alpha=80.5), EF at 0.1%,0.5%, 1%, 5%

    Software: GLIDE, GOLD, LeDock

  21. Jiang2021.xlsx[16]
  22. Data set: DUD-E, LIT-PCBA

    Metric: ROC AUC, EF at 1%, 5%, 10%

    Software: ROCS、Phase Shape、SHAFTS、WEGA、ShaEP、Shape-it、Align-it、LIGSIFT、LS-align

  23. Jocelyn2021.xlsx[17]
  24. Data set: DUD-E, LIT-PCBA

    Metric: ROC AUC, EF at 1%

    Software: GNINA 1.0 with scoring function: Affinity,Pose,Affinity-dense,Pose-dense,Affinity-General,Pose-General,Vina,Vinardo,RFScore-VS,RFScore-4

Tools

  1. metrics.py
  2. metrics: ROC AUC, BEDAUC, enrichment_factor(EF) and logAUC

    metrics.py can be available from oddt.

  3. ROCKER[9]
  4. ROCKER is a visualization tool for ROC and semi-log ROC curve

    ROCKER can be available from: http://www.medchem.fi/rocker

  5. bootstrap_tldr.py[11]
  6. bootstrap_tldr.py is a visualization tool for ROC and semi-log ROC curve

    bootstrap_tldr.py can be available from: https://dudez.docking.org

Reference

  1. Chaput, L.; Martinez-Sanz, J.; Saettel, N.; Mouawad, L. Benchmark of Four Popular Virtual Screening Programs: Construction of the Active/Decoy Dataset Remains a Major Determinant of Measured Performance. J. Cheminform. 2016, 8 (1), 56. https://doi.org/10.1186/s13321-016-0167-x.
  2. Cleves, A. E.; Jain, A. N. Structure- and Ligand-Based Virtual Screening on DUD-E + : Performance Dependence on Approximations to the Binding Pocket. J. Chem. Inf. Model. 2020, 60 (9), 4296–4310. https://doi.org/10.1021/acs.jcim.0c00115.
  3. Download: https://www.jainlab.org/downloads/

  4. Eberhardt, J.; Santos-Martins, D.; Tillack, A. F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, acs.jcim.1c00203. https://doi.org/10.1021/acs.jcim.1c00203.
  5. Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem. 2012, 55 (14), 6582–6594. https://doi.org/10.1021/jm300687e.
  6. Giangreco, I.; Mukhopadhyay, A.; C. Cole, J. Validation of a Field-Based Ligand Screener Using a Novel Benchmarking Data Set for Assessing 3D-Based Virtual Screening Methods. J. Chem. Inf. Model. 2021, 61 (12), 5841–5852. https://doi.org/10.1021/acs.jcim.1c00866.
  7. Wang, D.; Cui, C.; Ding, X.; Xiong, Z.; Zheng, M.; Luo, X.; Jiang, H.; Chen, K. Improving the Virtual Screening Ability of Target-Specific Scoring Functions Using Deep Learning Methods. 2019, 10 (August), 1–11. https://doi.org/10.3389/fphar.2019.00924.
  8. Imrie, F.; Bradley, A. R.; Van Der Schaar, M.; Deane, C. M. Protein Family-Specific Models Using Deep Neural Networks and Transfer Learning Improve Virtual Screening and Highlight the Need for More Data. J. Chem. Inf. Model. 2018, 58 (11), 2319–2330. https://doi.org/10.1021/acs.jcim.8b00350.
  9. Scoring - Calculate rank statistics. http://www.rdkit.org/docs/source/rdkit.ML.Scoring.Scoring.html
  10. Lätti, S.; Niinivehmas, S.; Pentikäinen, O. T. Rocker: Open Source, Easy-to-Use Tool for AUC and Enrichment Calculations and ROC Visualization. J. Cheminform. 2016, 8 (1), 45. https://doi.org/10.1186/s13321-016-0158-y.
  11. Jiang, S.; Feher, M.; Williams, C.; Cole, B.; Shaw, D. E. AutoPH4: An Automated Method for Generating Pharmacophore Models from Protein Binding Pockets. J. Chem. Inf. Model. 2020, 60 (9), 4326–4338. https://doi.org/10.1021/acs.jcim.0c00121.
  12. Stein, R. M.; Yang, Y.; Balius, T. E.; O’Meara, M. J.; Lyu, J.; Young, J.; Tang, K.; Shoichet, B. K.; Irwin, J. J. Property-Unmatched Decoys in Docking Benchmarks. J. Chem. Inf. Model. 2021, 61 (2), 699–714. https://doi.org/10.1021/acs.jcim.0c00598.
  13. Cleves, A. E.; Johnson, S. R.; Jain, A. N. Electrostatic-Field and Surface-Shape Similarity for Virtual Screening and Pose Prediction. J. Comput. Aided. Mol. Des. 2019, 33 (10), 865–886. https://doi.org/10.1007/s10822-019-00236-6.
  14. Koes, D. R.; Camacho, C. J. Shape-Based Virtual Screening with Volumetric Aligned Molecular Shapes. J. Comput. Chem. 2014, 35 (25), 1824–1834. https://doi.org/10.1002/jcc.23690.
  15. Puertas-Martín, S.; Redondo, J. L.; Ortigosa, P. M.; Pérez-Sánchez, H. OptiPharm: An Evolutionary Algorithm to Compare Shape Similarity. Sci. Rep. 2019, 9 (1), 1–24. https://doi.org/10.1038/s41598-018-37908-6.
  16. Shen, C.; Hu, Y.; Wang, Z.; Zhang, X.; Pang, J.; Wang, G.; Zhong, H.; Xu, L.; Cao, D.; Hou, T. Beware of the Generic Machine Learning-Based Scoring Functions in Structure-Based Virtual Screening. 2020, 00 (April), 1–22. https://doi.org/10.1093/bib/bbaa070.
  17. Jiang, Z.; Xu, J.; Yan, A.; Wang, L. A Comprehensive Comparative Assessment of 3D Molecular Similarity Tools in Ligand-Based Virtual Screening. Brief. Bioinform. 2021, 22 (6), 1–17. https://doi.org/10.1093/bib/bbab231.
  18. Sunseri, J.; Koes, D.R. Virtual Screening with Gnina 1.0. Molecules 2021, 26, 7369. https://doi.org/10.3390/molecules26237369

About

A collection of virtual screening benchmarking

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /