Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

danielpatrickhug/GitModel

Repository files navigation

GitModel (Graph Intelligence Tensor)

Self Portrait

GitModel is a pipeline that can generate high quality topic models of github repos using GPT, GNN message passing layers and BERTopic.

⚠️Warning: Not under active development. A more expansive system is actively being developed @ https://github.com/Neural-Dragon-AI - currently private. A preview from the org can be seen here including the openbugger and babydragon package https://www.youtube.com/live/BbUOoGfpjvQ?feature=share&t=18645

  • Generate documentation for Python repos and create enriched subgraphs for your codebases

  • Swap system prompt tasks(bug hunting, todo, documentation labeling, etc) for enriching semantic graph and dataset building.

    • The generated data is saved to context folder.
    • in src/format_system_prompts. w/ tree works but it requires manual changing one line of code. will fix soon
  • Pre-commit for isort, prettier, detect private_keys, black, flake8, and more.

  • GNN Message Passing and Topic modeling pipeline as an inductive bias (GRNN)

  • BERTopic is highly customizable and can compose several different clustering, embedding, vectorizers, bag of words and dimensionality reduction techniques.

  • https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md

How to Use

python3.10 -m venv venv && source venv/bin/activate && pip install -U pip setuptools wheel
pip install -r requirements.txt
python __main__.py

main.py

import argparse
from getpass import getpass
import openai
from src import Pipeline
if __name__ == "__main__":
 argsparse = argparse.ArgumentParser()
 argsparse.add_argument("--config", type=str, default="./test_config.yaml")
 argsparse.add_argument("--repo", type=str, default="https://github.com/danielpatrickhug/GitModel.git")
 argsparse.add_argument("--repo_name", type=str, default="gitmodel")
 args = argsparse.parse_args()
 openai_secret = getpass("Enter the secret key: ")
 # Set up OpenAI API credentials
 openai.api_key = openai_secret
 print("starting pipeline")
 pipeline = Pipeline.from_yaml(args.config)
 gnn_head_outputs, topic_model_outputs = pipeline.run(args.repo, args.repo_name)
 for i, topic_model_output in enumerate(topic_model_outputs):
 topic_model_output["data"].to_csv(f"context/{args.repo_name}_topic_model_outputs_{i}.csv")
 topic_model_output["topic_info"].to_csv(f"context/{args.repo_name}_topic_info_{i}.csv")
 with open(f"context/{args.repo_name}_tree_{i}.txt", "w", encoding="utf-8") as f:
 f.write(topic_model_output["tree"])

Topic model your dependencies.

If you have enough patience or a lot of money to afford more then one computer. run GitModel on /venv/lib/python3.10/site-packages

Examples

Gitmodel


. ├─Function description and comparison including Gaussian kernel and sparse
matrices\_**\_ │ ├─しかく──Understanding the Purpose and Handling of a Function for
Sparse Matrices with Inputs, Outputs, and P ── Topic: 9 │ └─Understanding
kernels and functions in the 'kernels.py' file for estimating PDF and computing
simila │ ├─しかく──Purpose and functions of kernel-related functions in kernels.py
file of a Python program, including ── Topic: 22 │ └─しかく──Understanding the
cos_sim and cos_sim_torch functions in kernels.py file\_\_** ── Topic: 25
└─Graph message passing and adjacency matrix computation using embeddings\_**\_
├─k-hop message passing and cosine similarity kernel computation for graph
embeddings\_\_** │ ├─k-hop message passing with adjacency matrix and node
features\_**\_ │ │ ├─Computation of Gaussian Kernel Matrix between Two Sets of
Embeddings using PyTorch\_\_** │ │ │ ├─しかく──Cosine Similarity with PyTorch Tensors
and Functional.\_**_ ── Topic: 1 │ │ │ └─しかく──Function to compute adjacency matrix
for embeddings using specified kernel type and threshold value_ ── Topic: 19 │ │
└─Message Passing and K-hop Aggregation in Graphs using Sparse Matrices and Node
Features\_\_** │ │ ├─しかく──Document pruning and adjacency matrix recomputation
using embeddings and thresholding\_**\_ ── Topic: 11 │ │ └─k-hop message passing
and adjacency matrix computation in sparse graphs.\_\_** │ │ ├─しかく──Computing
graph laplacian and degree matrix from pairwise distances using a given
function.\_**\_ ── Topic: 7 │ │ └─しかく──Message Passing with K-hop Adjacency and
Aggregated Features in Sparse Matrices\_\_** ── Topic: 8 │ └─"Outlier Reduction
Using Count-TF-IDF and OpenAI Representation Model"\_**\_ │ ├─Topic Modeling and
Outlier Reduction in Natural Language Processing (NLP)\_\_** │ │ ├─Understanding
the compose\*inference function in a chatbot system.\_**\_ │ │ │ ├─しかく──Processing
conversation transcripts with Python functions\_\_** ── Topic: 18 │ │ │
└─Understanding the compose_inference function in a chatbot conversation with
message templates\_\*\*\* │ │ │ ├─しかく──Understanding the `compose_inference`
Function in Chatbot Conversation Generation with OpenAI GPT\_** ── Topic: 2 │ │
│ └─しかく──Function to create prompt message template with role and text input
parameters and validation of rol ── Topic: 17 │ │ └─Outlier Reduction with
Machine Learning Models\_**\_ │ │ ├─Document processing and reduction techniques
for topic modeling with various machine learning models │ │ │ ├─MiniLM language
model for sentence embedding\_\_** │ │ │ │ ├─しかく──Embedding sentences using MiniLM
language model with multiprocessing and GPU acceleration\_**\_ ── Topic: 15 │ │
│ │ └─しかく──Embedding Sentences using Pre-Trained Language Model with
SentenceTransformer Library\_\_** ── Topic: 23 │ │ │ └─しかく──Topic modeling
algorithms and document reduction techniques\_**\_ ── Topic: 0 │ │ └─SQLalchemy
migrations in online mode with engine configuration\_\_** │ │ ├─しかく──Probability
Density Estimation with Gaussian Kernel Density Estimator\_**\_ ── Topic: 12 │ │
└─Running database migrations with SQLAlchemy and Alembic\_\_** │ │ ├─しかく──Graph
network message passing & Mobile App Navigation System Design\_**\_ ── Topic: 21
│ │ └─しかく──Running migrations with SQLAlchemy and Alembic in online mode\_\_** ──
Topic: 6 │ └─Class Settings definition using BaseSettings and its purpose for
managing configuration in a third-p │ ├─しかく──Empty class definition for managing
application settings using Pydantic's BaseSettings\_**\_ ── Topic: 3 │
└─しかく──MemoryTreeManager class implementation\_\_** ── Topic: 16 └─Codebase
decomposition and analysis with Git repository and AST nodes.\_**\_ ├─Code
decomposition and processing in Git repositories.\_\_** │ ├─しかく──Python code
parsing and analysis\_**\_ ── Topic: 4 │ └─Code decomposition in a Git
repository\_\_** │ ├─しかく──Decomposing Git Repositories with System Prompts.\_**\_
── Topic: 10 │ └─Parsing and pruning files in a GitHub repository\_\_** │
├─しかく──parsing and pruning files in a local Git repository\_**\_ ── Topic: 5 │
└─しかく──purpose of `get_repo_contents` function in `repo_graph_generation.py` for
retrieving and pruning Git ── Topic: 24 └─Analyzing chatbot main capabilities in
a codebase using natural language processing and notable fram ├─しかく──summarizing
code in a GitHub repository using ChatGPT\_\_** ── Topic: 14 └─Understanding
Codebase Structure and Functionality with Hierarchical Trees and
Frameworks\_**\_ ├─しかく──Analyzing codebase structure and functionalities using a
hierarchical topic tree\_\_\*\* ── Topic: 13 └─しかく──Understanding the difference
between format_system_prompts and format_system_prompts_with_tree in a ── Topic:
20

w/ graph code bert embeddings


. ├─"The Pipeline Class and Its Methods in GitModel Project"\_**\_ │
├─Probability Density Estimation using Gaussian KDE in SciPy\_\_** │ │
├─Probability density function estimation using Gaussian kernel density
estimation\_**\_ │ │ │ ├─しかく──Probability density estimation with Gaussian
kernel\_\_** ── Topic: 16 │ │ │ └─しかく──Understanding cos\*sim_torch function and
configuring context with URL and target metadata\_**\_ ── Topic: 14 │ │ └─Empty
class definition for MessageTreeManagerConfiguration in Python\_\_** │ │ ├─Empty
class definition in MessageTreeManagerConfiguration with BaseModel
inheritance.\_**\_ │ │ │ ├─しかく──Questions about bug fixing with system prompts in
kernel computation with tensors and matrices.\_\_** ── Topic: 13 │ │ │ └─Empty
class definitions and inability to determine expected behavior of
MemoryTreeManager class\_**\_ │ │ │ ├─しかく──Purpose of run_migrations_online in
Alembic environment file\_\_** ── Topic: 12 │ │ │ └─しかく──Empty class definition of
MessageTreeManagerConfiguration inheriting from BaseModel\_\*\*\* ── Topic: 25 │
│ └─Understanding the purpose of SemanticGraphContextGenerator and TopicModel
classes in the codebase\_** │ │ ├─しかく──Purpose of Pipeline class in codebase with
SemanticGraphContextGenerator, MessageTreeManagerConfigur ── Topic: 15 │ │
└─しかく──Understanding the purpose and usage of TopicModel class in dimensional
tensors and input shape setti ── Topic: 20 │ └─GitModel Pipeline class with
find_files_with_substring method\_**\_ │ ├─GitModel Pipeline Class and
find_files_with_substring Method Description\_\_** │ │ ├─しかく──Understanding the
`clone_and_create_context_folder` Function\_**\_ ── Topic: 4 │ │ └─GitModel
Pipeline class and methods for searching files with substring\_\_** │ │
├─GitModel Pipeline class and methods for file searching\_**\_ │ │ │ ├─しかく──Python
class for loading and initializing configuration values from a YAML file with
dynamic imports ── Topic: 9 │ │ │ └─しかく──The Pipeline class and its methods in
GitModel project configuration and file searching.\_\_** ── Topic: 10 │ │
└─しかく──Python Pipeline Class for Generating a Semantic Graph Context for Git
Repository Data Processing\_**\_ ── Topic: 8 │ └─しかく──Cloning and Storing
Repository in "Work" Folder with Custom Name using Python Function\_\_** ──
Topic: 22 └─Understanding the purpose and input of a Pipeline class in a project
involving semantic graphs and e ├─Topic Modeling with Hierarchical Topics and
Outlier Reduction Strategies in Python\_**\_ │ ├─Working with context folders
and creating directories using os module.\_\_** │ │ ├─しかく──Creating a work folder
and cloning a repository to create a context folder in Python\_**\_ ── Topic: 18
│ │ └─しかく──Working with context and folder paths in Python\_\_** ── Topic: 3 │
└─しかく──Topic modeling and representation using hierarchical and ctfidf
models\_**\_ ── Topic: 5 └─PyTorch function for computing Gaussian kernel matrix
and k-hop message passing on an adjacency matr ├─Compute k-hop adjacency matrix
and aggregated features using message passing in graph analysis.\_\_** │ ├─k-hop
message passing with adjacency matrix and node features\_**\_ │ │ ├─しかく──Document
Pruning and Adjacency Matrix Recomputation\_\_** ── Topic: 23 │ │ └─Computing
k-hop adjacency matrix with message passing in graph neural networks.\_**\_ │ │
├─しかく──Computing k-hop adjacency matrix and aggregated features using message
passing\_\_** ── Topic: 0 │ │ └─しかく──GNNHead class for computing kernel matrix
with node features in numpy array\_**\_ ── Topic: 1 │ └─Data Migrations in
Offline Mode.\_\_** │ ├─しかく──Degree matrix computation using adjacency distance
matrix and pairwise distances in Python\_**\_ ── Topic: 21 │ └─しかく──SQLAlchemy
migration in 'offline' mode\_\_** ── Topic: 11 └─Understanding code inputs and
purpose in a Pipeline class\_**\_ ├─Parsing Python files using AST module and
extracting specific information\_\_** │ ├─しかく──Cosine Similarity Computation using
PyTorch and NumPy\_**\_ ── Topic: 6 │ └─しかく──Python code parsing and data
extraction using AST\_\_** ── Topic: 17 └─Code Structure and Purpose of Pipeline
Class with Config and Semantic Graph Context Generator in Pyt ├─Code for a
Pipeline with Semantic Graph Context Generator\_**\_ │ ├─しかく──Understanding
Pipeline Class and Semantic Graph Context Generation in Python Code\_\_** ──
Topic: 24 │ └─しかく──Summarizing code in a GitHub repository using ChatGPT\_**\_ ──
Topic: 2 └─Semantic Graph Context Generator Class and Methods\_\_**
├─しかく──Semantic Graph Context Generation for Git Repositories.\_**\_ ── Topic: 19
└─しかく──Implementation of class instantiation using configuration and dictionary
mapping.\_\_\*\* ── Topic: 7

DeepMind CLRS


. ├─Purpose and Attributes of the `Net` Class in Graph Neural Networks\_**\_ │
├─Graph Attention Networks and DAG Shortest Paths in JAX.\_\_** │ │ ├─Graph
Attention Networks (GAT and GATv2) code implementation\_**\_ │ │ │ ├─Code for
DAG shortest path and depth-first search algorithms\_\_** │ │ │ │ ├─しかく──String
Matching and Maximum Subarray\_**\_ ── Topic: 10 │ │ │ │ └─Depth-First Search
and DAG Shortest Path Algorithms implemented in Python\_\_** │ │ │ │
├─しかく──Description of string probe functions in probing.py file for Hash Table
probing.\_**\_ ── Topic: 1 │ │ │ │ └─Graph Algorithms - DFS and DAG Shortest
Paths\_\_** │ │ │ │ ├─しかく──Graph algorithms (DFS and DAG shortest path) in
Python\_**\_ ── Topic: 0 │ │ │ │ └─しかく──Functions for decoding diff and graph
features in PyTorch graph neural networks.\_\_** ── Topic: 6 │ │ │ └─しかく──Graph
Attention Networks (GAT and GATv2)\_**\_ ── Topic: 20 │ │ └─しかく──Message Passing
with \_MessagePassingScanState, \_MessagePassingOutputChunked and
MessagePassingStateC ── Topic: 17 │ └─Implementing a Baseline Model with
Selectable Message Passing Algorithm and its Dataset Sampler.\_\_** │ ├─Handling
of untrained parameters in optimization updates\_**\_ │ │ ├─しかく──Updating
parameters with filtered gradients from multiple algorithms.\_\_** ── Topic: 8 │
│ └─しかく──Processing trajectory hints with variable-length time dimension using
batching.\_**\_ ── Topic: 9 │ └─Processing time-chunked data with batched
samplers and message passing nets.\_\_** │ ├─Model processing of time-chunked
data with dataset sampling and batch processing\_**\_ │ │ ├─しかく──CLRS dataset
download and URL retrieval on Google Cloud Platform\_\_** ── Topic: 13 │ │
└─Chunked data and dataset sampling with JAX.\_**\_ │ │ ├─しかく──JAX functions for
reshaping and restacking data for pmap computation\_\_** ── Topic: 4 │ │ └─Data
chunking with batched sampling and message passing in neural networks.\_**\_ │ │
├─Processing time-chunked data with batch samplers and a NetChunked class\_\_**
│ │ │ ├─しかく──Time-chunked data processing using BaselineModelChunked and
NetChunked in TensorFlow.\_**\_ ── Topic: 2 │ │ │ └─しかく──Creating samplers for
training data.\_\_** ── Topic: 11 │ │ └─しかく──Documented code for sampling
algorithms using randomized position generation.\_**\_ ── Topic: 3 │ └─しかく──Point
Sampling and Convex Hull Computation\_\_** ── Topic: 18 └─Loss functions for
training with time-chunked data\_**\_ ├─Loss calculation for time-chunked and
full-sample training.\_\_** │ ├─Code functions for evaluating predictions using
permutations and masking\_**\_ │ │ ├─しかく──Functions for Evaluating Predictions in
Probing Tasks.\_\_** ── Topic: 7 │ │ └─しかく──permutation pointer manipulation and
reduction in predictions\_**\_ ── Topic: 16 │ └─Loss calculation and decoder
output postprocessing in neural networks.\_\_** │ ├─しかく──Postprocessing with
Sinkhorn operator in log space\_**\_ ── Topic: 15 │ └─しかく──Loss calculation
methods for training with time and full samples\_\_** ── Topic: 19 └─Functions
for expanding and broadcasting JAX arrays\_**\_ ├─Description and input/output
parameters of \_expand_to and \_is_not_done_broadcast functions\_\_** │
├─しかく──Array expansion and broadcasting techniques\_**\_ ── Topic: 21 │
└─しかく──Purpose and Functionality of \_is_not_done_broadcast Function\_\_** ──
Topic: 14 └─Sampler classes and associated data generation types\_**\_
├─しかく──Understanding Parameters and Expected Input/Output of Various Functions
(including mst_prim, floyd_w ── Topic: 5 └─しかく──Sampling classes and their data
generation purpose\_\_** ── Topic: 12
  • recurrent generation augmented with the above topic tree in system prompt

. ├─DFS and DAG Shortest Paths Algorithm Implementation with Probing\_**\_ │
├─しかく──Bipartite matching-based flow networks\_\_** ── Topic: 34 │ └─Search and
Shortest Path Algorithms\_**\_ │ ├─DAG shortest path algorithm with probing and
initialization\_\_** │ │ ├─しかく──Strongly Connected Components Algorithm with
Kosaraju's Implementation\_**\_ ── Topic: 37 │ │ └─Graph Sampling and DAG
Shortest Path Algorithm\_\_** │ │ ├─しかく──Bipartite matching using Edmonds-Karp
algorithm\_**\_ ── Topic: 18 │ │ └─しかく──Random graph generation using Bellman-Ford
algorithm in Python\_\_** ── Topic: 0 │ └─Graham scan convex hull algorithm
implementation in Python\_**\_ │ ├─しかく──Maximum subarray algorithm
implementation\_\_** ── Topic: 6 │ └─しかく──Graham scan convex hull algorithm
implementation\_**\_ ── Topic: 12 └─Postprocessing Decoder Output for Chunked
Data Processing Net\_\_** ├─Postprocessing Decoder Output with Chunked Data in
JAX\_**\_ │ ├─Functions and Files in Probing.py Explained\_\_** │ │ ├─Functions
and techniques for data splitting and replication in probing and pmap
computation.\_**\_ │ │ │ ├─Understanding the strings_pair_cat function and
split_stages function in probing.py file\_\_** │ │ │ │ ├─TFDS CLRSDataset
Command-Line Tool for Sampling Datasets\_**\_ │ │ │ │ │ ├─しかく──CLRS30 dataset and
related functions explanation\_\_** ── Topic: 5 │ │ │ │ │ └─しかく──TFDS CLRSDataset
Builder Implementation\_**\_ ── Topic: 16 │ │ │ │ └─Functions and Probing in
Python Code\_\_** │ │ │ │ ├─Purpose of the `split_stages` function in
`probing.py` and related functions for evaluating
`ProbesD │ │ │ │ │ ├─Functions for evaluating hint and output predictions using permutation objects and dictionaries.____ │ │ │ │ │ │ ├─Processing randomized `pos`input in a sampler with pointers and permutations.____ │ │ │ │ │ │ │ ├─しかく──Process randomization of`pos`input in algorithms including string algorithms____ ── Topic: 29 │ │ │ │ │ │ │ └─しかく──A function to replace should-be permutations with proper permutation pointers using a sample iterato ── Topic: 19 │ │ │ │ │ │ └─Function for Evaluating Permutation Predictions using Hint Data____ │ │ │ │ │ │ ├─しかく──Function to Reduce Permutations in a Dictionary of Result Objects____ ── Topic: 11 │ │ │ │ │ │ └─しかく──Function to evaluate hint predictions with tuple and list inputs____ ── Topic: 17 │ │ │ │ │ └─Understanding probing functions in Hash Table implementation____ │ │ │ │ │ ├─Hash Table Probing Functions in probing.py File____ │ │ │ │ │ │ ├─しかく──Splitting ProbesDict into DataPoints by stage in Python____ ── Topic: 14 │ │ │ │ │ │ └─しかく──Understanding Hash Table Probing Functions (strings_pi, strings_pos, strings_pair_cat) in Python's`
── Topic: 1 │ │ │ │ │ └─しかく──Functions for Checking Input Dimensions in Machine
Learning Models\_**_ ── Topic: 15 │ │ │ │ └─JAX pmap reshaping and computation
functions (\_pmap_reshape, \_maybe_pmap_reshape, \_maybe_pmap_data)_ │ │ │ │
├─JAX pmap computation and pytree reshaping\_\_** │ │ │ │ │ ├─しかく──Purpose and
attributes of the Stage and OutputClass classes\_**\_ ── Topic: 22 │ │ │ │ │
└─しかく──JAX tree reshaping for pmap computation with \_pmap_reshape and
\_maybe_pmap_reshape functions\_\_** ── Topic: 3 │ │ │ │ └─Numpy array copying
functions with assertions\_**\_ │ │ │ │ ├─しかく──Functions for copying data between
numpy arrays in Python\_\_** ── Topic: 21 │ │ │ │ └─しかく──Function Purpose and
Parameters Analysis in Codebase\_**\_ ── Topic: 9 │ │ │ └─Trajectory Batching
with Variable-Length Time Dimension\_\_** │ │ │ ├─しかく──Trajectory Batching and
Concatenation\_**\_ ── Topic: 35 │ │ │ └─しかく──Batch processing of variable-length
hint trajectories.\_\_** ── Topic: 31 │ │ └─Understanding the
`_is_not_done_broadcast` function and its input/output parameters.\_**\_ │ │
├─しかく──Understanding the \_is_not_done_broadcast function in JAX array for
sequence completion.\_\_** ── Topic: 8 │ │ └─しかく──Array broadcasting and expansion
with \_expand_and_broadcast_to and \_expand_to functions\_**\_ ── Topic: 27 │
└─Postprocessing Decoder Output with Sinkhorn Algorithm and Hard
Categorization\_\_** │ ├─Node Feature Decoding with Encoders and Decoders\_**\_
│ │ ├─しかく──Position Encoding Function for Natural Language Processing\_\_** ──
Topic: 23 │ │ └─Node feature decoding using decoders and edge features\_**\_ │ │
├─しかく──Creating Encoders with Xavier Initialization and Truncated Normal
Distribution for Encoding Categori ── Topic: 33 │ │ └─Node feature decoding with
decoders and edge features\_\_** │ │ ├─しかく──Node feature decoding and encoding
with decoders and edge features\_**\_ ── Topic: 2 │ │ └─しかく──Graph diff
decoders\_\_** ── Topic: 32 │ └─Postprocessing of decoder output in graph neural
networks.\_**\_ │ ├─Decoder Output Postprocessing with Sinkhorn Algorithm and
Cross-Entropy Loss\_\_** │ │ ├─Message Passing Net with Time-Chunked Data
Processing\_**\_ │ │ │ ├─しかく──Python Class for Message Passing Model with
Selectable Algorithm\_\_** ── Topic: 26 │ │ │ └─しかく──NetChunked message passing
operation with LSTM states for time-chunked data\_**\_ ── Topic: 7 │ │ └─Loss
calculation for time-chunked training with scalar truth data.\_\_** │ │ ├─Loss
calculation function for time-chunked training with scalar truth data.\_**\_ │ │
│ ├─しかく──Loss calculation for time-chunked training data\_\_** ── Topic: 4 │ │ │
└─しかく──Logarithmic Sinkhorn Operator for Permutation Pointer Logits\_**\_ ──
Topic: 10 │ │ └─しかく──Decoder postprocessing with Sinkhorn operator\_\_** ── Topic:
28 │ └─Gradient Filtering for Optimizer Updates\_**\_ │ ├─しかく──Filtering processor
parameters in Haiku models\_\_** ── Topic: 30 │ └─しかく──Filtering null gradients
for untrained parameters during optimization.\_**\_ ── Topic: 24 └─PGN with Jax
implementation and NeurIPS 2020 paper\_\_** ├─Message-Passing Neural Network
(MPNN) for Graph Convolutional Networks (GCNs)\_**\_ │ ├─しかく──"Applying Triplet
Message Passing with HK Transforms in MPNN for Graph Neural Networks"\_\_** ──
Topic: 20 │ └─しかく──Implementation of Deep Sets (Zaheer et al., NeurIPS 2017) using
adjacency matrices and memory networ ── Topic: 13 └─GATv2 Graph Attention
Network with adjustable sizes of multi-head attention and residual connections
├─しかく──Graph Attention Network v2 architecture with adjustable head number and
output size.\_**\_ ── Topic: 36 └─しかく──Processor factory with various models and
configurations\_\_** ── Topic: 25

Langchain


. ├─Combining documents with different chain types and LLM chains\_**\_ │
├─MapReduce Chain Loading and Combining\_\_** │ │ ├─Question answering chain
with sources loading and combining\_**\_ │ │ │ ├─しかく──Loading question answering
with sources chain with multiple loader mappings and chains.\_\_** ── Topic: 53
│ │ │ └─しかく──Loading and Combining Documents with Language Models for Summarizing
and QA\_**\_ ── Topic: 71 │ │ └─Map Reduce Chain Loading Function\_\_** │ │
├─Document Refinement using LLM Chains\_**\_ │ │ │ ├─しかく──Combining Documents with
Stuffing and LLM Chain in Python\_\_** ── Topic: 97 │ │ │
└─BaseQAWithSourcesChain document handling and processing.\_**\_ │ │ │
├─しかく──Question Answering with Sources over Documents Chain\_\_** ── Topic: 60 │ │
│ └─しかく──Python class for chatbot with vector database and question
generation\_**\_ ── Topic: 16 │ │ └─MapReduce chain implementation\_\_** │ │
├─しかく──MapReduceDocumentsChain document combination with chaining and
mapping\_**\_ ── Topic: 12 │ │ └─しかく──MapReduce Chain Loading Function\_\_** ──
Topic: 95 │ └─LLMBashChain document examples and related keywords\_**\_ │ ├─Bash
operations and language modeling chain implementation\_\_** │ │
├─LLMSummarizationCheckerChain document samples\_**\_ │ │ │ ├─しかく──Working with
SQL databases in Python using SQLDatabaseChain\_\_** ── Topic: 46 │ │ │
└─Document processing with LLMSummarizationCheckerChain\_**\_ │ │ │
├─しかく──Implementation of Program-Aided Language Models with PALChain class and
related prompts and assertio ── Topic: 31 │ │ │
└─しかく──LLMSummarizationCheckerChain class and its functionality\_\_** ── Topic: 93
│ │ └─LLMBashChain - interpreting prompts and executing bash code\_**\_ │ │
├─しかく──LLMMathChain - Python code execution for math prompts\_\_** ── Topic: 92 │
│ └─しかく──Bash execution with LLMBashChain\_**\_ ── Topic: 80 │ └─しかく──MRKLChain
implementation with ChainConfig and API integration\_\_** ── Topic: 59 └─Code
organization and structure in Python including several classes related to
self-hosted embedding ├─Code organization and improvement suggestions for a
class definition.\_**\_ │ ├─Code Loading and Organization Best Practices\_\_** │
│ ├─Web scraping Hacker News webpage titles\_**\_ │ │ │ ├─Loading files using
unstructured in Python\_\_** │ │ │ │ ├─Unstructured file loading with retry and
partitioning capabilities.\_**\_ │ │ │ │ │ ├─しかく──Retry Decorator for OpenAI API
Calls\_\_** ── Topic: 45 │ │ │ │ │ └─Unstructured File Loading and
Partitioning\_**\_ │ │ │ │ │ ├─しかく──Unstructured File Loader for Partitioning
Files in Various Formats\_\_** ── Topic: 25 │ │ │ │ │ └─しかく──Loading files with
Unstructured package in different modes (Python code).\_**\_ ── Topic: 26 │ │ │
│ └─PDF manipulation in Python with pypdf, pdfminer, fitz and pymupdf
libraries\_\_** │ │ │ │ ├─しかく──PDF file loading and text extraction using PyMuPDF
and PDFMiner\_**\_ ── Topic: 69 │ │ │ │ └─しかく──Extracting Text from Paged PDF
using PyPDF and PDFMiner\_\_** ── Topic: 96 │ │ │ └─Extracting Hacker News
Webpage Information using WebBaseLoader and BeautifulSoup.\_**\_ │ │ │ ├─しかく──Web
scraping Hacker News with BeautifulSoup and WebBaseLoader\_\_** ── Topic: 21 │ │
│ └─しかく──Web Scraping for College Confidential and Lyrics Websites\_**\_ ── Topic:
76 │ │ └─Code organization and structure in various Python modules\_\_** │ │
├─Compliments on clear and structured codebase with good use of type hints for
memory handling and con │ │ │ ├─Implementation of ReAct paper using ReActChain
with examples in Python\_**\_ │ │ │ │ ├─しかく──Implementation of ReAct paper in
ReActChain agent with OpenAI LLC model and tools\_\_** ── Topic: 101 │ │ │ │
└─In-memory Docstore for Efficient Lookup and Exploration\_**\_ │ │ │ │
├─しかく──Document Store Exploration with DocstoreExplorer\_\_** ── Topic: 87 │ │ │ │
└─しかく──InMemoryDocstore for Storing and Searching Documents with
AddableMixin\_**\_ ── Topic: 61 │ │ │ └─Compliments on Code Readability and
Organization in Python Codebase.\_\_** │ │ │ ├─Memory Handling and Conversation
Management\_**\_ │ │ │ │ ├─Memory Conversation Summarizer Implementation\_\_** │
│ │ │ │ ├─Memory and Conversation Summarization in AI-assisted dialogues.\_**\_
│ │ │ │ │ │ ├─しかく──Purpose of ChatPromptValue class in chat.py\_\_** ── Topic: 30
│ │ │ │ │ │ └─しかく──Memory management and conversation summarization in AI chatbot
system.\_**\_ ── Topic: 6 │ │ │ │ │ └─しかく──Implementation of Chain class with
CallbackManager and Memory attributes.\_\_** ── Topic: 52 │ │ │ │ └─Potential
bugs and suggestions for loading LLM, few-shot prompts, and examples from JSON
and YAML fi │ │ │ │ ├─Code structure and organization tips for loading examples
and templates from files in Python.\_**\_ │ │ │ │ │ ├─Compliments on code
structure and organization\_\_** │ │ │ │ │ │ ├─しかく──Loading few-shot prompts from
config with prefix and suffix templates\_**\_ ── Topic: 34 │ │ │ │ │ │ └─Code
organization and structure for creating chat prompt templates\_\_** │ │ │ │ │ │
├─しかく──Chat prompt template and message prompt templates for generating chatbot
prompts.\_**\_ ── Topic: 8 │ │ │ │ │ │ └─しかく──Purpose of `_load_prompt_from_file`
function in loading.py module.\_\_** ── Topic: 13 │ │ │ │ │ └─しかく──Function for
Loading a Chain of LLM Checkers from a Configuration Dictionary.\_**\_ ── Topic:
3 │ │ │ │ └─Documented class definitions for tools used in handling API
requests, including OpenSearchVectorSear │ │ │ │ ├─Handling API requests using
tools such as RequestsPostTool and OpenSearchVectorSearch\_\_** │ │ │ │ │
├─Python requests wrapper for making HTTP requests with various tools and
methods\_**\_ │ │ │ │ │ │ ├─しかく──DeepInfra API token and text generation model
wrapper\_\_** ── Topic: 41 │ │ │ │ │ │ └─RequestsWrapper and BaseRequestsTool
for making HTTP requests (POST, GET, PATCH, DELETE) to API endp │ │ │ │ │ │
├─しかく──Checking Validity of Template Strings with Input Variables and Formatter
Mapping\_**\_ ── Topic: 14 │ │ │ │ │ │ └─しかく──Requests tools for making HTTP
requests with Python\_\_** ── Topic: 10 │ │ │ │ │ └─Code organization and
positive feedback\_**\_ │ │ │ │ │ ├─Bing Search API Wrapper and Handler
Classes\_\_** │ │ │ │ │ │ ├─しかく──Langchain callback manager and codebase
organization\_**\_ ── Topic: 2 │ │ │ │ │ │ └─しかく──Bing Search API Wrapper and SERP
API Usage in Python\_\_** ── Topic: 1 │ │ │ │ │ └─Handling iFixit devices with
models and remote hardware\_**\_ │ │ │ │ │ ├─しかく──Loading iFixit repair guides and
device wikis with transformer model inference.\_\_** ── Topic: 0 │ │ │ │ │
└─しかく──Potential Issues with Modifying Input Dictionary in a Prompt Loading
Function\_**\_ ── Topic: 9 │ │ │ │ └─Implementation and Usage of
SearxSearchWrapper with Environment Variables and SSL Support\_\_** │ │ │ │
├─Python Libraries for API Wrappers and Search Engines\_**\_ │ │ │ │ │ ├─Python
packages for integrating with search engines: SearxSearchWrapper and
QdrantClient.\_\_** │ │ │ │ │ │ ├─しかく──Implementation of Searx API Wrapper
(SearxSearchWrapper) using Python's BaseModel with QdrantClient ── Topic: 33 │ │
│ │ │ │ └─しかく──Handling environment variables and dictionaries with
get*from_dict_or_env function\_**\_ ── Topic: 72 │ │ │ │ │ └─Purpose and Issues
with `print_text` Function in `langchain` Repository's `input.py` File\_\_** │ │
│ │ │ ├─しかく──Printing Highlighted Text with Options in Python\_**\_ ── Topic: 51 │
│ │ │ │ └─しかく──Converting Python Objects to String Representation with Nested
Structures and Joining on Newline Cha ── Topic: 66 │ │ │ │ └─GitbookLoader class
and its methods\_\_** │ │ │ │ ├─しかく──Handling newlines recursively in data
structures using pandas\_**\_ ── Topic: 29 │ │ │ │ └─GitBookLoader class for
loading web pages with options to load all or single pages\_\_** │ │ │ │
├─しかく──GitbookLoader class for loading single or multiple pages from GitBook with
relative paths in the nav ── Topic: 28 │ │ │ │ └─しかく──Length-Based Example
Selection and Text Length Calculation\_**\_ ── Topic: 57 │ │ │ └─Ngram overlap
score using sentence_bleu and method1 smoothing function\_\_** │ │ │ ├─Ngram
overlap score using sentence_bleu method1 smoothing function and auto
reweighting\_**\_ │ │ │ │ ├─しかく──Code structure and organization in langchain
document loaders with support for parsing comma-separat ── Topic: 70 │ │ │ │
└─Ngram overlap score using sentence_bleu and method1 smoothing function with
auto reweighting in nltk │ │ │ │ ├─しかく──Compliments on well-structured and
organized code in different classes and methods\_\_** ── Topic: 65 │ │ │ │
└─しかく──Sentence BLEU score and ngram overlap computation with method1 smoothing
function and auto reweighti ── Topic: 49 │ │ │ └─Model Definition and
Experimentation with Datetime and UTCNow Attributes\_**\_ │ │ │ ├─しかく──Data
Modeling with Time Zones in Python\_\_** ── Topic: 91 │ │ │ └─しかく──Constitutional
Principles and Tracing in Python\_**\_ ── Topic: 68 │ │ └─Text splitting for
knowledge triple extraction\_\_** │ │ ├─Text Splitting Toolkit\_**\_ │ │ │
├─Text splitting interface and implementation\_\_** │ │ │ │ ├─Python REPL Tool
and AST Implementation\_**\_ │ │ │ │ │ ├─Python REPL Tool Implementation\_\_** │
│ │ │ │ │ ├─SQL database metadata retrieval tool\_**\_ │ │ │ │ │ │ │ ├─しかく──Python
function to concatenate cell information for AI and human usage\_\_** ── Topic:
44 │ │ │ │ │ │ │ └─SQL database metadata tool for listing table schema and
metadata\_**\_ │ │ │ │ │ │ │ ├─しかく──SQL database metadata extraction tool for
specified tables\_\_** ── Topic: 75 │ │ │ │ │ │ │ └─しかく──JSON and SQL database
tools for listing and getting values\_**\_ ── Topic: 15 │ │ │ │ │ │ └─Python
REPL Tool using AST and Coroutine\_\_** │ │ │ │ │ │ ├─しかく──Tool implementation
with direct function or coroutine input and error handling.\_**\_ ── Topic: 99 │
│ │ │ │ │ └─しかく──Python REPL Tool with AST and version validation\_\_** ── Topic:
74 │ │ │ │ │ └─Implementing API wrappers for news, movie information, and
weather using APIChain\_**\_ │ │ │ │ │ ├─Implementing APIs for News, Weather,
and Movie Information in LangChain's Load Tools Module\_\_** │ │ │ │ │ │
├─しかく──Language model for reasoning about position and color attributes of objects
in weather forecasting w ── Topic: 73 │ │ │ │ │ │ └─Implementing APIs for
fetching news and movies using Python\_**\_ │ │ │ │ │ │ ├─しかく──well-structured and
readable implementation of API initialization functions in load_tools.py for Too
── Topic: 85 │ │ │ │ │ │ └─しかく──Working with API authentication and chaining for
news and movie information retrieval (using news_ap ── Topic: 100 │ │ │ │ │
└─しかく──Wolfram Alpha SDK querying using WolframAlphaQueryRun class and api_wrapper
attribute\_\_** ── Topic: 89 │ │ │ │ └─TextSplitting for Vector Storage with
Overlapping Chunks\_**\_ │ │ │ │ ├─Python's StrictFormatter class and its
check_unused_args method for formatting and validation of inp │ │ │ │ │ ├─L2
distance search using ndarray in Python\_\_** │ │ │ │ │ │ ├─しかく──L2 search for
nearest neighbors with np.linalg.norm\_**\_ ── Topic: 32 │ │ │ │ │ │
└─しかく──Parsing and Organizing Notes with Hashing and Embeddings\_\_** ── Topic: 67
│ │ │ │ │ └─Python Class for Strict Formatter with Check on Unused Args\_**\_ │
│ │ │ │ ├─Vector Store Toolkit and Deployment\_\_** │ │ │ │ │ │ ├─しかく──Vector
Store Toolkit and Deployment with OpenAI LLM\_**\_ ── Topic: 35 │ │ │ │ │ │
└─しかく──Working with AirbyteJSONLoader to load local Airbyte JSON files\_\_** ──
Topic: 47 │ │ │ │ │ └─Python Formatter class with check_unused_args method and
strict validation\_**\_ │ │ │ │ │ ├─Python's StrictFormatter class and its
check_unused_args method for validating unused and extra argu │ │ │ │ │ │
├─しかく──Finding TODO Tasks in Code Snippets\_\_** ── Topic: 4 │ │ │ │ │ │ └─Python
Formatter and StrictFormatter with check_unused_args method\_**\_ │ │ │ │ │ │
├─しかく──Color Mapping Function for Prompt Inputs with Exclusions\_\_** ── Topic: 88
│ │ │ │ │ │ └─しかく──Implementing strict checking of unused and extra keys in a
subclass of formatter\_**\_ ── Topic: 48 │ │ │ │ │ └─Python module for loading
and manipulating language chain data with verbosity control.\_\_** │ │ │ │ │
├─しかく──Python function for getting verbosity from language chaining with Azure
OpenAI and difference from O ── Topic: 64 │ │ │ │ │ └─しかく──Purpose of functions in
loading.py and csv toolkit of langchain repository\_**\_ ── Topic: 42 │ │ │ │
└─Text splitting using chunk size and overlap with various libraries and
interfaces.\_\_** │ │ │ │ ├─Text splitting and chunking with overlap and length
functions\_**\_ │ │ │ │ │ ├─しかく──Developing and Maintaining Docker Compose Modules
in Python\_\_** ── Topic: 79 │ │ │ │ │ └─Text splitting and chunking using
TextSplitter interface\_**\_ │ │ │ │ │ ├─Text Splitting Interface and
Implementation\_\_** │ │ │ │ │ │ ├─しかく──Text splitting using TokenTextSplitter
class.\_**\_ ── Topic: 7 │ │ │ │ │ │ └─しかく──Document Loading and Splitting with
Text Splitting and Callback Management.\_\_** ── Topic: 84 │ │ │ │ │ └─しかく──Python
code for initializing an agent with various optional arguments\_**\_ ── Topic:
18 │ │ │ │ └─Loading Google Docs from Google Drive using Credentials and Tokens
with Python\_\_** │ │ │ │ ├─Document Loading from Cloud Storage (GCS and S3)
using BaseLoader Class\_**\_ │ │ │ │ │ ├─しかく──Online PDF loading and caching using
SQLite and temporary directories\_\_** ── Topic: 98 │ │ │ │ │ └─しかく──Loading
documents from cloud storage using GCSFileLoader and S3FileLoader classes.\_**\_
── Topic: 36 │ │ │ │ └─しかく──Google Drive Loader and Credentials for Loading Google
Docs\_\_** ── Topic: 86 │ │ │ └─StreamlitCallbackHandler for logging to
streamlit in Python code\_**\_ │ │ │ ├─Streaming with LLMs and Callback
Handlers\_\_** │ │ │ │ ├─Networkx wrapper for entity graph operations with Redis
caching.\_**\_ │ │ │ │ │ ├─NetworkX Entity Graph with Missing Tables and
Callback Manager\_\_** │ │ │ │ │ │ ├─しかく──Graph Index Creation and Operations
using NetworkX Library in Python\_**\_ ── Topic: 58 │ │ │ │ │ │
└─しかく──NetworkxEntityGraph and entity graph operations.\_\_** ── Topic: 20 │ │ │ │
│ └─Redis cache implementation in Python\_**\_ │ │ │ │ │ ├─しかく──Implementing a
SQAlchemy-based cache system with missing and existing prompts for better
performance ── Topic: 17 │ │ │ │ │ └─しかく──Implementation of a Redis cache as a
backend in Python\_\_** ── Topic: 39 │ │ │ │ └─Python Callback Handler for
Streamlit Logging\_**\_ │ │ │ │ ├─しかく──Callback handlers for printing to standard
output.\_\_** ── Topic: 43 │ │ │ │ └─しかく──StreamlitCallbackHandler for logging
prompts and actions to Streamlit\_**\_ ── Topic: 90 │ │ │ └─ZeroShotAgent class
and observation prefix property in Python\_\_** │ │ │ ├─Creating a JSON agent
using a toolkit for zeroshot agent execution with format instructions and inpu │
│ │ │ ├─しかく──Creating Pandas DataFrames using Agent Scratchpad and Python AST REPL
Tool.\_**\_ ── Topic: 82 │ │ │ │ └─Creating a JSON agent with toolkit, format
instructions, and prefix/suffix\_\_** │ │ │ │ ├─しかく──SQL agent creation with
SQLDatabaseToolkit, BaseLLM and BaseCallbackManager\_**\_ ── Topic: 11 │ │ │ │
└─しかく──Creating a JSON agent with OpenAPI toolkit and interacting with it using
JSON tools\_\_** ── Topic: 56 │ │ │ └─Classes for language model-driven decision
making and use of "agent_scratchpad" in LLMChain prompts* │ │ │ ├─しかく──Agent class
and entity extraction using "agent*scratchpad" variable\_**\_ ── Topic: 38 │ │ │
└─しかく──Code for a text-based game-playing agent using self-ask-with-search
approach in TextWorld environmen ── Topic: 102 │ │ └─Text Mapping for
Approximate k-NN Search using nmslib in Python\_\_** │ │ ├─Script Scoring with
KNN Search\_**\_ │ │ │ ├─しかく──Document bulk-ingest function for embeddings in
Elasticsearch index\_\_** ── Topic: 23 │ │ │ └─しかく──Script Scoring Search with
Cosine Similarity and k-Nearest Neighbors (k-NN) Algorithm\_**\_ ── Topic: 19 │
│ └─Default text mapping for Approximate k-NN Search in dense vector fields
using NMSLIB engine\_\_** │ │ ├─しかく──Default Mapping for Approximate k-NN Search
using NMSLIB Engine\_**\_ ── Topic: 81 │ │ └─しかく──Elasticsearch indexing and
scripting with default mappings and painless scripting\_\_** ── Topic: 94 │
└─Tracing and Recording Runs with SharedTracer and TracerStack\_**\_ │ ├─Python
classes ToolRun and ChainRun in schemas.py file with additional attributes and
their purpose. │ │ ├─しかく──Extracting information about ElementInViewPort instances
in chainrun toolrun runs.\_\_** ── Topic: 77 │ │ └─しかく──Purpose and attributes of
the ChainRun class in schemas.py file\_**\_ ── Topic: 78 │ └─Tracing and
thread-safe execution with SharedTracer Singleton class\_\_** │ ├─しかく──Tracing
Execution Order with BaseTracer in a Thread-Safe Manner\_**\_ ── Topic: 55 │
└─しかく──TracerStack and SharedTracer Implementation in Python\_\_** ── Topic: 63
└─Python wrapper for OpenAI and Hugging Face language models\_**\_ ├─Self-Hosted
Hugging Face Instructor Embedding Models on Remote Hardware\_\_** │
├─HuggingFace and Sentence-Transformers Embeddings for Cohere\_**\_ │ │
├─しかく──Output parsing using regular expressions and the BaseOutputParser
class\_\_** ── Topic: 54 │ │ └─NLP Embeddings using Hugging Face and Sentence
Transformers\_**\_ │ │ ├─しかく──Neural Embeddings with Hugging Face and Cohere
API\_\_** ── Topic: 24 │ │ └─しかく──Loading sentence embedding model with
sentence_transformers library.\_**\_ ── Topic: 27 │ └─Self-hosted HuggingFace
pipeline API for running models on remote hardware\_\_** │ ├─Self-hosted
HuggingFace pipeline for remote GPU hardware inference with autolaunched
instances on va │ │ ├─しかく──Self-hosted HuggingFace pipeline for remote hardware
with HuggingFace Transformers and AutoTokenizer ── Topic: 40 │ │
└─しかく──Self-hosted embeddings for sentence_transformers with remote hardware
support.\_**\_ ── Topic: 22 │ └─しかく──Self-hosted embeddings for running custom
embedding models on remote hardware\_\_** ── Topic: 62 └─Python wrapper for
OpenAI language model with API key authentication and model parameters
configurat ├─OpenAI Language Model Wrapper Class with API Key Authentication and
Model Parameters Configuration\_\_ │ ├─しかく──StochasticAI Wrapper for Large
Language Models with Environment Key Validation and PDF Partitioning* ── Topic:
50 │ └─Integration of OpenAI Language Model with GooseAI class for Text
Generation\_**\_ │ ├─しかく──OpenAI Chat Model Implementation\_\_** ── Topic: 37 │
└─しかく──Python Wrapper for OpenAI Language Models\_**\_ ── Topic: 5 └─しかく──Anthropic
Large Language Models and API Usage in AtlasDB Project Management\_\_** ──
Topic: 83

Pyknotid


└─Calculation of Alexander polynomial for knots in Python and Mathematica.\_**\_
├─Alexander polynomial calculation using Mathematica process and knot routing
algorithm with various p │ ├─Calculation of Alexander polynomial for knots using
Python and Mathematica representations\_\_** │ │ ├─CellKnot object
initialization and properties with sin, cos, linspace, phi, psi, theta,
rotation, pe │ │ │ ├─Mollweide projection and spherical coordinates\_**\_ │ │ │
│ ├─Rotation of Spheres using Rotation Matrices\_\_** │ │ │ │ │ ├─しかく──Rotation of
sphere to align given positions at the top\_**\_ ── Topic: 41 │ │ │ │ │
└─しかく──Rotation matrix computation and manipulation using iterable angles.\_\_**
── Topic: 18 │ │ │ │ └─Mollweide projection and conversion of spherical
coordinates\_**\_ │ │ │ │ ├─Mollweide projection and spherical coordinates
conversion\_\_** │ │ │ │ │ ├─しかく──Vector magnitude calculation, Mollweide
projection, and well-written code in Python.\_**\_ ── Topic: 51 │ │ │ │ │
└─しかく──"Mollweide projection and spherical coordinate conversion"\_\_** ── Topic:
30 │ │ │ │ └─しかく──Verbose printing function for Pyknotid counters.\_**\_ ── Topic:
10 │ │ │ └─CellKnot class and points folding\_\_** │ │ │ ├─CellKnot and Knot
Folding\_**\_ │ │ │ │ ├─しかく──Understanding the "cell_trefoil" function and the
"aperiodic_trefoil" function for creating interpol ── Topic: 37 │ │ │ │
└─しかく──CellKnot class and related methods\_\_** ── Topic: 33 │ │ │ └─3D geometric
scaling with numpy and crossing signs\_**\_ │ │ │ ├─Geometric Transformation
with Crossing Signs\_\_** │ │ │ │ ├─しかく──Numpy arrays for creating and perturbing
a simple link using sin and cos in Python code.\_**\_ ── Topic: 15 │ │ │ │
└─しかく──Geometric transformation with crossing signs and np array\_\_** ── Topic: 3
│ │ │ └─しかく──3D point scaling helper functions in p4_3**1, p4_4**1, p4_5**1_false,
p5_3**1 and p5_4**1.\_\_** ── Topic: 47 │ │ └─Knot representations and
calculation of Alexander polynomial using Python and Mathematica\_**\_ │ │
├─Line Segment Open by Distance Generator\_\_** │ │ │ ├─Issues with missing
function definitions and potential bugs in serialisation functions.\_**\_ │ │ │
│ ├─しかく──JSON and polynomial serialisation with potential implementation
issues\_\_** ── Topic: 17 │ │ │ │ └─しかく──Issues with incomplete function for
serialising Jones polynomials in Python\_**\_ ── Topic: 36 │ │ │ └─Line vectors
open by distance fraction with seed and number of segments as parameters.\_\_**
│ │ │ ├─Line segment manipulation and generation\_**\_ │ │ │ │ ├─Line Segments
and Open/Closed Loop Detection\_\_** │ │ │ │ │ ├─しかく──Open and closed line
segments generation with distance constraint.\_**\_ ── Topic: 5 │ │ │ │ │
└─しかく──Writing Mathematica code to file and running it using MathKernel\_\_** ──
Topic: 28 │ │ │ │ └─Loading and manipulating CSV files with Pandas and saving to
JSON.\_**\_ │ │ │ │ ├─しかく──Writing and loading data in json format with numpy and
handling file paths (filenotfounderror explan ── Topic: 14 │ │ │ │ └─しかく──Parsing
CSV data using pandas in Python\_\_** ── Topic: 19 │ │ │ └─Downloading Knots
Database with Pyknotid Library.\_**\_ │ │ │ ├─Knots database download and
management\_\_** │ │ │ │ ├─しかく──Downloading Knots Database using Pyknotid
Library\_**\_ ── Topic: 23 │ │ │ │ └─しかく──Deleting old versions of database files
in specific format using Python.\_\_** ── Topic: 44 │ │ │ └─しかく──Recursive file
inclusion using fnmatch patterns in Python\_**\_ ── Topic: 43 │ │ └─Alexander
polynomial computation using Mathematica for knot representations\_\_** │ │
├─Calculation of Alexander polynomial using Python and Mathematica code
snippets.\_**\_ │ │ │ ├─MeshCollectionVisual class and associated methods for
vertex colors and shading in mesh visualizatio │ │ │ │ ├─Code Refactoring and
Todo Tasks with Comments and Unit Tests\_\_** │ │ │ │ │ ├─しかく──Classes and
functionality for handling periodic boundary conditions in a 2D space.\_**\_ ──
Topic: 39 │ │ │ │ │ └─しかく──Code Refactoring and Unit Testing\_\_** ── Topic: 4 │ │
│ │ └─MeshCollectionVisual class and vertex colors in 3D mesh
visualization.\_**\_ │ │ │ │ ├─Signal Smoothing with Window Functions\_\_** │ │
│ │ │ ├─しかく──Testing vector intersection in a dp/dq region using
do_vectors_intersect function and obtaining bool ── Topic: 20 │ │ │ │ │ └─signal
smoothing with different windows and sizes\_**\_ │ │ │ │ │ ├─しかく──Signal Smoothing
using Different Windows\_\_** ── Topic: 49 │ │ │ │ │ └─しかく──Code organization and
readability of periodic_vassiliev_degree_2 function in adherence with PEP 8 gu
── Topic: 26 │ │ │ │ └─MeshCollectionVisual class and related methods\_**\_ │ │
│ │ ├─しかく──MeshCollectionVisual class and its methods for mesh visualization and
handling vertex colors and sha ── Topic: 9 │ │ │ │ └─しかく──Cell object for lines
with periodic boundary conditions\_\_** ── Topic: 45 │ │ │ └─Alexander
polynomial calculation using Mathematica\_**\_ │ │ │ ├─Calculating the Alexander
polynomial of knots using various representations\_\_** │ │ │ │ ├─Gauss code
conversion to crossing indices\_**\_ │ │ │ │ │ ├─Recommendations for the "mag"
function implementation in periodic.py\_\_** │ │ │ │ │ │ ├─しかく──Implementing
vector magnitude using dot product in Pyknotid\_**\_ ── Topic: 8 │ │ │ │ │ │
└─しかく──Improving code with imports and using numpy.zeros instead of n.zeros.\_\_**
── Topic: 50 │ │ │ │ │ └─しかく──Converting Gauss code to crossings in a crossing
object\_**\_ ── Topic: 22 │ │ │ │ └─Calculation of Alexander polynomial using
Mathematica for knot representations\_\_** │ │ │ │ ├─Knot theory and Alexander
polynomial calculation using Mathematica\_**\_ │ │ │ │ │ ├─しかく──BoundingBox class
implementation in Python with numpy and axis manipulation\_\_** ── Topic: 1 │ │
│ │ │ └─しかく──Calculation of Alexander polynomial for knot representations using
Mathematica\_**\_ ── Topic: 0 │ │ │ │ └─3D sphere plotting with Mollweide
projection using VisPy\_\_** │ │ │ │ ├─しかく──"3D visualization of spherical data
using VisPy and Mollweide projection"\_**\_ ── Topic: 2 │ │ │ │ └─しかく──Class
definition of MeshCollectionVisual that creates a mesh by concatenating visuals'
vertices, ind ── Topic: 12 │ │ │ └─Database objects matching invariants using
Python code\_\_** │ │ │ ├─Database objects and invariants in knot theory\_**\_ │
│ │ │ ├─しかく──"Database storage and manipulation of knots using Peewee and
optimized Cython routines"\_\_** ── Topic: 35 │ │ │ │ └─しかく──Database searching
with invariants in Python\_**\_ ── Topic: 7 │ │ │ └─しかく──OpenKnot class for
holding vertices of an open curve in spacecurves module\_\_** ── Topic: 38 │ │
└─Parsing data files and visualizing with matplotlib and mayavi/vispy.\_**\_ │ │
├─Code for drawing bounding boxes in 3D using VisPy\_\_** │ │ │ ├─Plotting
Lissajous Conformation with Vispy and Mayavi Toolkits\_**\_ │ │ │ │
├─しかく──Plotting Lissajous conformations with plot_cell using Vispy and Mayavi
toolkits\_\_** ── Topic: 13 │ │ │ │ └─しかく──Understanding the plot_line() function
in pyknotid's visualise.py and its 3D plotting toolkits (Maya ── Topic: 27 │ │ │
└─しかく──Bounding box visualization with VisPy\_**\_ ── Topic: 32 │ │ └─Analyzing
knot type of curve in a data file using argparse parser and VisPy canvas
plotting.\_\_** │ │ ├─しかく──Plotting 2D projections with optional markers in Python
using pyplot\_**\_ ── Topic: 48 │ │ └─Analysis of knot types in data files using
argparse and vispy_canvas.\_\_** │ │ ├─しかく──Working with VisPy Canvas and Scene
objects\_**\_ ── Topic: 40 │ │ └─しかく──Parsing and analyzing knot types in data
files using argparse\_\_** ── Topic: 42 │ └─Alternative Periodic Vassiliev
Function with Conway Notation (Degree 4, Z4 Coefficients) and Core Cr │
├─しかく──Calculation of writhing numbers using Arrow diagrams and Gauss codes\_**\_
── Topic: 16 │ └─Alternative periodic Vassiliev function for Conway notation
with z4 coefficients and related invaria │ ├─しかく──Arnold's invariants and their
calculation by transforming representation into an unknot\_\_** ── Topic: 6 │
└─しかく──Alternative periodic Vassiliev function in pyknotid with Conway notation
and Z4 coefficients\_**\_ ── Topic: 11 └─"Calculating higher order writhe
integrals using numpy and cython"\_\_** ├─Calculation of Higher Order Writhe
Integral with NumPy and Cython Implementation.\_**\_ │ ├─Calculation of higher
order writhe integral using points and order contributions\_\_** │ │
├─しかく──higher_order_writhe_integral function implementation with numpy\_**\_ ──
Topic: 29 │ │ └─しかく──Writhing matrix and coefficient calculations for points in
3-dimensional space\_\_** ── Topic: 46 │ └─しかく──Calculation of Writhe and Average
Crossing Number using Integral\_**\_ ── Topic: 21 └─しかく──Distance Quantity
Calculation from Curve Integral\_\_** ── Topic: 31

PyReason


. ├─Updating Interpretations Graph with Nodes and Edges\_**\_ │ ├─Analysis of
Python code implementing a graph data structure and functions to add nodes and
edges, us │ │ ├─しかく──Code Refactoring and Commenting, Handling None Values in
Python Code\_\_** ── Topic: 10 │ │ └─Code analysis and review of a function for
adding edges and nodes to a graph, including checking for │ │ ├─しかく──Positive
aspects of a codebase with clear and descriptive function names and variable
names.\_**\_ ── Topic: 4 │ │ └─しかく──Methods for adding edges to a graph with
considerations for existing nodes and labels.\_\_** ── Topic: 11 │ └─Updating
nodes and edges in a graph with rule trace and atom trace, using Numba for
optimization\_**\_ │ ├─Python functions for updating rule traces with graph
attributes\_\_** │ │ ├─しかく──Updating nodes with rules and traces in a converging
system.\_**\_ ── Topic: 15 │ │ └─しかく──Interpretation of Graph Labels Using Numba
in Python\_\_** ── Topic: 5 │ └─analysis of profiling data for program
optimization\_**\_ │ ├─しかく──Parsing YAML to create a list of rules\_\_** ── Topic:
9 │ └─しかく──Parsing and Profiling Data from CSV files in Python\_**\_ ── Topic: 1
└─Python Object Getter Implementation for Fact Objects\_\_** ├─Python code
structure and implementation in pyreason's numba_wrapper lib\_**\_ │ ├─Functions
and objects in pyreason's numba_wrapper module that return nested functions and
implement │ │ ├─しかく──Function for getting time lower and upper bounds from a fact
object\_\_** ── Topic: 14 │ │ └─Higher-order functions in rule_type.py for
accessing fields of a rule object in pyreason/pyreason/sc │ │ ├─Python classes
and object-oriented programming concepts with "Fact" class examples.\_**\_ │ │ │
├─しかく──Nested function type checking with isinstance in Python\_\_** ── Topic: 8 │
│ │ └─しかく──Class Fact and its attributes and methods.\_**\_ ── Topic: 7 │ │
└─Numba implementation functions for label and world types in PyReason\_\_** │ │
├─Higher-order functions for getting attributes of rules in PyReason's
numba_types module\_**\_ │ │ │ ├─しかく──Code structure and naming conventions in
pyreason's numba_wrapper/numpy_types directory\_\_** ── Topic: 6 │ │ │
└─しかく──Implementation details of the `get_target_criteria` function and
`unbox_rule` in rule_type.py\_**\_ ── Topic: 0 │ │ └─しかく──Implementation of
interval methods in pyreason using numba_wrapper\_\_** ── Topic: 2 │
└─Compliments on codebase functions for calculating minimum, maximum, average,
and average lower using │ ├─しかく──Implementing a reset function to update the
bounds of an interval object in Python\_**\_ ── Topic: 18 │ └─しかく──Compliments on
Function Names and Docstrings for Array Calculation Functions\_\_** ── Topic: 13
└─Working with pyapi and objects in Python code\_**\_ ├─Understanding a Python
code snippet for unboxing facts with structmodels\_\_** │ ├─しかく──Object Unboxing
and Attribute Retrieval in Python with PyAPI\_**\_ ── Topic: 17 │ └─Numba code
for creating and boxing a struct model instance\_\_** │ ├─しかく──Code snippet for
creating a struct proxy and boxing its components in Numba.\_**\_ ── Topic: 3 │
└─しかく──Python class RuleModel with labeled attributes and types\_\_** ── Topic: 12
└─しかく──Functions for creating and boxing objects in a Python-C++ interface\_\_\_\_
── Topic: 16

AltStyle によって変換されたページ (->オリジナル) /