A Pythonic Interface for Symbolic and Numerical Mathematics
MathFlow bridges the gap between symbolic mathematics (SymPy) and numerical computations (NumPy/SciPy), offering a unified interface that maintains mathematical rigor while providing practical tools for real-world problems.
Ready to revolutionize your mathematical computing workflow?
pip install mathflow
Have Questions? Take a look at the Q&A: Questions & Answers: Addressing Potential Concerns
- ๐ Operative Closure: Mathematical operations return new Expression objects by default
- โก Mutability Control: Choose between immutable (default) and mutable expressions for different workflows
- ๐ Seamless Numerical Integration: Every symbolic expression has a
.nattribute providing numerical methods without manual lambdification (uses cached lambdified expression when needed) - ๐จ Enhanced Printing: Flexible output formatting through the
.printattribute (LaTeX, pretty printing, code generation) - ๐ก Signal System: Qt-like signals for tracking expression mutations and clones, enabling reactive programming
- ๐ Automatic Type Conversions: Seamlessly and automatically converts between internal Poly and Expr representations based on context
- ๐ฆ Lightweight: ~0.5 MB itself, ~100 MB including dependencies
- ๐งฉ Fully backward compatible: Seamlessly integrate SymPy and MathFlow in the same script. All methods that work on SymPy Expr or Poly objects work on MathFlow objects
- ๐ Exploratory: Full IDE support, enabling easy tool finding and minimizing the learning curve.
from mathflow import Expression, Polynomial, Rational # Create expressions naturally f = Expression("2x^2 + 3x + \frac{1}{2}") # latex is automatically parsed g = Expression("sin(x) + cos(x)") # Automatic operative closure - operations return new objects of the same type h = f + g # f and g remain unchanged hprime = h.diff() # hprime is still an Expression object # Numerical evaluation made easy result = f(2.5) # Numerically evaluate at x = 2.5 # Use the .n attribute to access fast numerical methods numerical_roots = f.n.all_roots() # Call f's n-prefixed methods to use variable precision numerical methods precise_roots = f.nsolve_all(prec=50) # 50 digits of accuracy # quick and easy printing f.print() f.print('latex') f.print('mathematica_code') # or print(f.print.latex()) # LaTeX output print(f.print.ccode()) # c code output
MathFlow excels at bridging symbolic and numerical mathematics:
f = Expression("x^3 - 2x^2 + x - 1") # Root finding all_roots = f.n.all_roots(bounds=(-5, 5)) specific_root = f.nsolve_all(bounds=(-5, 5), prec=50) # High-precision solve # Numerical calculus derivative_func = f.n.derivative_lambda(df_order=2) # 2nd derivative numerical function integral_result = f.n.integrate(-1, 1) # Definite integral # Optimization minimum = f.n.minimize(bounds=[(-2, 2)])
graph BT
%% Visual hierarchy with correct arrow semantics
sympy.Expr
sympy.Poly
BaseExpression
Expression
Polynomial
Rational
Function
%% Arrows still point child โ parent
BaseExpression -.-> sympy.Expr
BaseExpression -.-> sympy.Poly
Expression --> n
n --> |lambdified numerical representation| A["f(x)"]
n -.-> scipy.numerical_methods
Expression --> BaseExpression
Polynomial --> Expression
Rational --> Expression
Function --> |Only an Alias| Expression
Diagram Notes
- Dotted arrows mean "proxy to".
- Additional methods are not shown, only the core structure.
The primary class for general symbolic expressions with numerical and printing capabilities.
# Create from string with natural notation expr = Expression("2x^2 + ln(|x-1|)") # Or from SymPy objects from sympy import sin, cos expr = Expression(sin(x) + cos(x)) # Symbolic operations derivative = expr.diff(x) expanded = expr.expand() # Numerical methods via .n attribute roots = expr.n.all_roots(bounds=(-10, 10)) integral = expr.n.quad(0, 1) # Numerical integration
Specialized Expression subclass with polynomial-specific functionality.
# Create from coefficients (ascending order by default) poly = Polynomial.from_coeffs([1, 2, 3]) # 1 + 2x + 3x2 # Create from roots poly = Polynomial.from_roots([1, 2, 3]) # (x-1)(x-2)(x-3) # Access polynomial-specific methods coeffs = poly.all_coeffs() degree = poly.degree() roots = poly.n.all_poly_roots() # Optimized polynomial root finding
For rational functions (quotients of polynomials).
# Create from numerator and denominator coefficients rational = Rational.from_coeffs([1, 2], [1, 1, 1]) # (1 + 2x)/(1 + x + x2) # Access numerator and denominator as Expression objects num = rational.numerator den = rational.denominator # Partial fraction decomposition poles = den.n.all_roots() # numerically find the poles. pf = rational.partial_fractions(x)
# Immutable (default) f = Expression("x^2") g = f + 1 # f unchanged, g is new Expression object # Mutable Mode (f is modified in-place) f = Expression("(x-1)^2", mutable=True) f += 1 f.expand()
# Natural mathematical notation expr = Expression("2x^2 + ln(|x-1|)") # LaTeX input support expr = Expression(r"\frac{x^2+1}{x-1}") # Implicit multiplication expr = Expression("2x sin(x)")
def on_change(expr): # runs whenever an operation changes f print(f"Expression changed to: {expr}") f = Expression("x^2") f.on_self_mutated.connect(on_change) f.on_self_cloned.connect(on_change) f += 1 # on_change() is called
# High-quality Padรฉ approximants for function approximation f = Expression("exp(x)") pade_approx = f.pade(m=3, n=3, x0=0) # [3/3] Padรฉ approximant around x=0 # Multiple backends available (returns Expression by default, but you can change return type) pade_fast = f.pade(3, 3, backend='mpmath') # Fast numerical pade_exact = f.pade(3, 3, backend='symbolic') # Exact symbolic pade_verbose = f.pade(3, 3, backend='verbose') # Educational output
When backend='verbose', each step is displayed as the Padรฉ approximation is computed.
f = Expression("sqrt(x)") p = f.pade(2, 2, x0=1, backend='verbose')
For example, the above displays this:
Step 1. Create rational function with numerator P and denominator Q, each with unknown coefficients:
(a0 + a1*h + a2*h^2)/(1 + b1*h + b2*h^2)
Step 2. Equate the rational function to the taylor series A so that the unknown coefficients may be solved:
(a0 + a1*h + a2*h^2)/(1 + b1*h + b2*h^2) = 1 + 1/2*h + -1/8*h^2 + 1/16*h^3 + -5/128*h^4
Step 3. Multiply the rhs by the denominator of the lhs to get the equation in the form P = QA:
a0 + a1*h + a2*h^2 = (1 + b1*h + b2*h^2) (1 + 1/2*h + -1/8*h^2 + 1/16*h^3 + -5/128*h^4)
Step 4. Expand the RHS by performing discrete convolution on the coefficient vectors of Q and A (using a table):
Q's coeffs = [1, b1, b2]
A's coeffs = [1, 1/2, -1/8, 1/16, -5/128]
โญโโโโโฌโโโโโโฌโโโโโโโโโฌโโโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโโโโโฎ
โ โ 1 โ 1/2 โ -1/8 โ 1/16 โ -5/128 โ
โโโโโโผโโโโโโผโโโโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโโโโโค
โ 1 โ 1 โ 1*1/2 โ 1*(-1/8) โ 1*1/16 โ 1*(-5/128) โ
โโโโโโผโโโโโโผโโโโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโโโโโค
โ b1 โ b1 โ b1*1/2 โ b1*(-1/8) โ b1*1/16 โ b1*(-5/128) โ
โโโโโโผโโโโโโผโโโโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโโโโโค
โ b2 โ b2 โ b2*1/2 โ b2*(-1/8) โ b2*1/16 โ b2*(-5/128) โ
โฐโโโโโดโโโโโโดโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโโโโโฏ
Step 5. Get the sum of the anti-diagonals from the above table to form the new coeffs (only as many terms as unknown coeffs we need to solve for, in this case 5):
โญโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโฎ
โ Term โ Coeff โ
โโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโค
โ h^0 โ 1 โ
โโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโค
โ h^1 โ b1 + 1/2 โ
โโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโค
โ h^2 โ b1/2 + b2 - 1/8 โ
โโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโค
โ h^3 โ -b1/8 + b2/2 + 1/16 โ
โโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโค
โ h^4 โ b1/16 - b2/8 - 5/128 โ
โฐโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโฏ
Step 6. Use these coefficients to setup a system of equations:
a0 = 1
a1 = b1 + 1/2
a2 = b1/2 + b2 - 1/8
0 = -b1/8 + b2/2 + 1/16
0 = b1/16 - b2/8 - 5/128
Step 7. Solving the above system yields:
a0 = 1
a1 = 5/4
a2 = 5/16
b1 = 3/4
b2 = 1/16
Step 8. Substituting these values back into the original rational function yields:
(1 + 5/4*h + 5/16*h^2)/(1 + 3/4*h + 1/16*h^2)
Step 9. `h` may be substituted for the original (x-c), and then expanded. `c` is the point at which both the Taylor series and the Padรฉ approximation are centered at:
(1 + 5/4*(x-c) + 5/16*(x-c)^2)/(1 + 3/4*(x-c) + 1/16*(x-c)^2)
MathFlow follows several key principles:
- Intuitive API: Mathematical operations should feel natural in Python, providing an "exploratory" experience
- Performance: Automatic optimizations (Horner's method, efficient algorithms, automatic numerical computing when needed)
- Flexibility: Support both functional and OOP programming styles
- Extensibility: Easy integration with other mathematical libraries
- Type Safety: Comprehensive type and method hints for full IDE support
- Provide a way to set configurations and defaults
- Provide a better testing suite to ensure all edge cases are taken care of
- Create an official MCP server for MathFLow. This would allow integrations with any AI tool, including local ones.
- Integrate AI by introducing an
.ai()method that calls a local instance of Mathฮฃtral and Project Numina models over ollama. It would be given context of both the expressions structure and its mathematical properties. One could also use it construct expressions using natural language.
AI Integration Example
>>> f = Expression("A polynomial with the first five prime numbers as coefficients") >>> f.ai("Have you seen a polynomial with such properties before?") ... >>> fp = f.diff() >>> fp.ai("How have the coefficients changed?") ...
We welcome contributions! Soon, we will publish a list of documents covering contribution guidelines here. Come back later if you are interested in contributing!
- SymPy: Symbolic mathematics engine
- mpmath: High-precision arithmetic
- SciPy: Advanced numerical algorithms
- NumPy: Numerical array operations
- tabulate: Pretty table printing (for verbose modes)
This project is licensed under the MIT License - see the LICENSE file for details.