Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Tree-Shu-Zhao/HashNet_PyTorch

Repository files navigation

HashNet: Deep Learning to Hash by Continuation

REQUIREMENTS

pip install -r requirements.txt

  1. pytorch >= 1.0
  2. loguru

DATASETS

  1. CIFAR-10 Password: aemd
  2. NUS-WIDE Password: msfv
  3. Imagenet100 Password: xpab

USAGE

usage: run.py [-h] [--dataset DATASET] [--root ROOT]
 [--code-length CODE_LENGTH] [--arch ARCH]
 [--batch-size BATCH_SIZE] [--lr LR] [--max-iter MAX_ITER]
 [--num-workers NUM_WORKERS] [--topk TOPK] [--gpu GPU]
 [--alpha ALPHA] [--seed SEED]
 [--evaluate-interval EVALUATE_INTERVAL]
HashNet_PyTorch
optional arguments:
 -h, --help show this help message and exit
 --dataset DATASET Dataset name.
 --root ROOT Path of dataset
 --code-length CODE_LENGTH
 Binary hash code length.
 --arch ARCH CNN model name.(default: alexnet)
 --batch-size BATCH_SIZE
 Batch size.(default: 256)
 --lr LR Learning rate.(default: 1e-5)
 --max-iter MAX_ITER Number of iterations.(default: 300)
 --num-workers NUM_WORKERS
 Number of loading data threads.(default: 6)
 --topk TOPK Calculate map of top k.(default: all)
 --gpu GPU Using gpu.(default: False)
 --alpha ALPHA Hyper-parameter.(default: 1)
 --seed SEED Random seed.(default: 3367)
 --evaluate-interval EVALUATE_INTERVAL
 Evaluation interval.(default: 10)

EXPERIMENTS

CNN model: Alexnet.

cifar10: 1000 query images, 5000 training images, MAP@ALL.

nus-wide: Top 21 classes, 2100 query images, 10500 training images, MAP@5000.

imagenet100: Top 100 classes, 5000 query images, 10000 training images, MAP@1000.

bits 16 32 48 128
cifar10@ALL 0.7290 0.7528 0.7512 0.7579
nus-wide-tc21@5000 0.7981 0.8200 0.8300 0.8424
imagenet100@1000 0.3651 0.4629 0.5094 0.5787

About

Source code for paper "HashNet: Deep Learning to Hash by Continuation" on ICCV-2017

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

AltStyle によって変換されたページ (->オリジナル) /