Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Add longest-valid-parentheses #3038

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
shimmer12 wants to merge 2 commits into TheAlgorithms:master
base: master
Choose a base branch
Loading
from shimmer12:patch-1
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 101 additions & 0 deletions dynamic_programming/longest_valid_parentheses.cpp
View file Open in desktop
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
/**
* @file
* @details
* Given a string containing just the characters '(' and ')',
* find the length of the longest valid (well-formed) parentheses substring.
*
* ### Approach
* This solution uses Dynamic Programming.
* We maintain an array `longest[]` where `longest[i]` represents
* the length of the longest valid parentheses substring ending at index `i`.
*
* - If `s[i] == '('`, then `longest[i] = 0` (a valid substring cannot end with '(').
* - If `s[i] == ')'`:
* - If `s[i - 1] == '('`, then `longest[i] = longest[i - 2] + 2`
* - Else if `s[i - 1] == ')'` and `s[i - longest[i - 1] - 1] == '('`,
* then `longest[i] = longest[i - 1] + 2 + longest[i - longest[i - 1] - 2]`
*
* Example:
* Input: "()(())"
* At i = 5, longest = [0, 2, 0, 0, 2, 0]
* longest[5] = longest[4] + 2 + longest[1] = 6
*
* @note
* Time Complexity: O(n)
* Space Complexity: O(n)
*/

#include <bits/stdc++.h>
using namespace std;

/**
* @brief Dynamic Programming based solution to find the longest valid parentheses substring.
* @param s Input string containing '(' and ')'
* @return Length of the longest valid parentheses substring
*/
int longestValidParentheses(const string &s) {
if (s.length() <= 1) return 0;

int curMax = 0;
vector<int> longest(s.size(), 0);

for (int i = 1; i < s.length(); i++) {
if (s[i] == ')') {
if (s[i - 1] == '(') {
longest[i] = (i - 2 >= 0 ? longest[i - 2] + 2 : 2);
} else if (i - longest[i - 1] - 1 >= 0 && s[i - longest[i - 1] - 1] == '(') {
longest[i] = longest[i - 1] + 2 +
((i - longest[i - 1] - 2 >= 0) ? longest[i - longest[i - 1] - 2] : 0);
}
curMax = max(curMax, longest[i]);
}
}
return curMax;
}

/**
* @brief Concise version
* Same logic as above but written in a more compact form.
*/
int longestValidParenthesesConcise(const string &s) {
if (s.length() <= 1) return 0;

int curMax = 0;
vector<int> longest(s.size(), 0);

for (int i = 1; i < s.length(); i++) {
if (s[i] == ')' && i - longest[i - 1] - 1 >= 0 && s[i - longest[i - 1] - 1] == '(') {
longest[i] = longest[i - 1] + 2 +
((i - longest[i - 1] - 2 >= 0) ? longest[i - longest[i - 1] - 2] : 0);
curMax = max(curMax, longest[i]);
}
}
return curMax;
}

/**
* @brief Driver code for demonstration and basic testing.
*/
int main() {
vector<string> test_cases = {
"(()", // expected 2
")()())", // expected 4
"()(())", // expected 6
"((((((", // expected 0
"()(()))))" // expected 6
};

cout << "Testing Longest Valid Parentheses using DP:\n";
for (const auto &s : test_cases) {
cout << "Input: " << s
<< " | Output: " << longestValidParentheses(s) << endl;
}

cout << "\nTesting Concise Version:\n";
for (const auto &s : test_cases) {
cout << "Input: " << s
<< " | Output: " << longestValidParenthesesConcise(s) << endl;
}

return 0;
}

AltStyle によって変換されたページ (->オリジナル) /