Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

QikaiXu/Recommender-System-Pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

5 Commits

Repository files navigation

Recommender System Pytorch

基于 Pytorch 实现推荐系统相关的算法。

想着看过书和论文后,能自己实现一下加深理解。

  • 模型在 notebook 文件中都有实现效果;
  • 其中关于 Embedding 部分的思路及代码参考自 pytorch-fm;

Datasets

  • MovieLens:ml-latest-small 中的 ratings.csv,共 1m 条记录;
  • Criteo:截取头部 100k 条;
  • Amazon Books:已经处理好的数据来源于 DIEN-pipeline,截取头部 100k 条;

Data Processing

数据处理方法参考自 Recommender-System-with-TF2.0:

  • 连续型数据:分箱后进行 One-hot 编码。
  • 类别型数据:One-hot 编码。

Available Models

Model Paper
Logistic Regression, LR
Mixed Logistic Regression, MLR Kun Gai, et al. Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction, 2017.
GBDT + LR
Factorization Machine, FM S Rendle, Factorization Machines, 2010.
Field-aware Factorization Machine, FFM Y Juan, et al. Field-aware Factorization Machines for CTR Prediction, 2015.
Deep Crossing Ying Shan, et al.Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features, 2016.
Product-based Neural Network, PNN Y Qu, et al. Product-based Neural Networks for User Response Prediction, 2016.
Wide & Deep HT Cheng, et al. Wide & Deep Learning for Recommender Systems, 2016.
Deep & Cross Network, DCN R Wang, et al. Deep & Cross Network for Ad Click Predictions, 2017.
Factorization Machine supported Neural Network, FNN W Zhang, et al. Deep Learning over Multi-field Categorical Data - A Case Study on User Response Prediction, 2016.
DeepFM H Guo, et al. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, 2017.
Neural Factorization Machine, NFM X He and TS Chua, Neural Factorization Machines for Sparse Predictive Analytics, 2017.
Attentional Factorization Machine, AFM J Xiao, et al. Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks, 2017.
Deep Interest Network, DIN Guorui Zhou, et al. Deep Interest Network for Click-Through Rate Prediction, 2017.
Deep Interest Evolution Network, DIEN Guorui Zhou, et al. Deep Interest Evolution Network for Click-Through Rate Prediction, 2018.
Latent Factor Model, LFM
Neural Collaborative Filtering, NeuralCF X He, et al. Neural Collaborative Filtering, 2017.

AltStyle によって変換されたページ (->オリジナル) /