Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

DahnJ/H3-Pandas

Repository files navigation

H3 Logo

H3-Pandas ⬢ 🐼

Integrates H3 with GeoPandas and Pandas. image Binder image Documentation Status


Try it out


example usage

Installation

pip

image

pip install h3pandas

conda

conda-version Anaconda-Server Badge

conda install -c conda-forge h3pandas

Usage examples

H3 API

h3pandas automatically applies H3 functions to both Pandas Dataframes and GeoPandas Geodataframes

# Prepare data
>>> import pandas as pd
>>> import h3pandas
>>> df = pd.DataFrame({'lat': [50, 51], 'lng': [14, 15]})
>>> resolution = 10
>>> df = df.h3.geo_to_h3(resolution)
>>> df
| h3_10 | lat | lng |
|:----------------|------:|------:|
| 8a1e30973807fff | 50 | 14 |
| 8a1e2659c2c7fff | 51 | 15 |
>>> df = df.h3.h3_to_geo_boundary()
>>> df
| h3_10 | lat | lng | geometry |
|:----------------|------:|------:|:----------------|
| 8a1e30973807fff | 50 | 14 | POLYGON ((...)) |
| 8a1e2659c2c7fff | 51 | 15 | POLYGON ((...)) |

H3-Pandas Extended API

h3pandas also provides some extended functionality out-of-the-box, often simplifying common workflows into a single command.

# Set up data
>>> import numpy as np
>>> import pandas as pd
>>> np.random.seed(1729)
>>> df = pd.DataFrame({
>>> 'lat': np.random.uniform(50, 51, 100),
>>> 'lng': np.random.uniform(14, 15, 100),
>>> 'value': np.random.poisson(100, 100)})
>>> })
# Aggregate values by their location and sum
>>> df = df.h3.geo_to_h3_aggregate(3)
>>> df
| h3_03 | value | geometry |
|:----------------|--------:|:----------------|
| 831e30fffffffff | 102 | POLYGON ((...)) |
| 831e34fffffffff | 189 | POLYGON ((...)) |
| 831e35fffffffff | 8744 | POLYGON ((...)) |
| 831f1bfffffffff | 1040 | POLYGON ((...)) |
# Aggregate to a lower H3 resolution
>>> df.h3.h3_to_parent_aggregate(2)
| h3_02 | value | geometry |
|:----------------|--------:|:----------------|
| 821e37fffffffff | 9035 | POLYGON ((...)) |
| 821f1ffffffffff | 1040 | POLYGON ((...)) |

Further examples

For more examples, see the example notebooks.

API

For a full API documentation and more usage examples, see the documentation.

Development

H3-Pandas cover the basics of the H3 API, but there are still many possible improvements.

Any suggestions and contributions are very welcome!

In particular, the next steps are:

  • Improvements & stability of the "Extended API", e.g. k_ring_smoothing.

Additional possible directions

See issues for more.

Packages

No packages published

Contributors 4

Languages

AltStyle によって変換されたページ (->オリジナル) /