Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Python script that uses LLMs on Groq to create Python programs, iterating until they run to completion

License

Notifications You must be signed in to change notification settings

Beliavsky/Groq-Python-agent

Repository files navigation

Groq-Python-agent

Python script that uses LLMs on Groq to create Python programs, iterating until they run to completion. Sample output:

prompt:
Write a Python function that fits a finite mixture of normals with a
specified # of components to univariate data, using the EM algorithm,
and write a main program that tests it for data simulated from a known
mixture distribution. Write a function to display the parameters in a
formatted table. Use the function to display the true and estimated
parameters. Use numpy if helpful. Use the print function to
display results, using to_string() for a pandas dataframe.
Only output Python code. Do not give commentary.
model: qwen-2.5-coder-32b
Code ran successfully after 1 attempt (generation time: 2.349 seconds, LOC=55)!
Output:
 Component True Weight True Mean True Covariance Estimated Weight Estimated Mean Estimated Covariance
 0 0.4 0 1 0.400835 0.057349 1.097366
 1 0.6 5 1 0.599165 5.049657 0.943687
Total generation time: 2.349 seconds across 1 attempt
Run command: python main.py

The code generated is

# Generated from prompt file: prompt_mix.txt
# Model used: qwen-2.5-coder-32b
# Time generated: 2025年03月08日 16:45:03
# Generation time: 2.349 seconds
import numpy as np
import pandas as pd
from scipy.stats import norm
from scipy.special import logsumexp
def fit_mixture_of_normals(data, k, max_iter=100, tol=1e-6):
 n = len(data)
 np.random.seed(0)
 means = np.random.choice(data, k)
 covariances = np.random.rand(k)
 weights = np.ones(k) / k
 r = np.zeros((n, k))
 
 for _ in range(max_iter):
 # Expectation step
 for i in range(k):
 r[:, i] = weights[i] * norm.pdf(data, means[i], np.sqrt(covariances[i]))
 r /= r.sum(axis=1, keepdims=True) 
 
 # Maximization step
 s = r.sum(axis=0)
 means = (r * data.reshape(-1, 1)).sum(axis=0) / s
 covariances = ((r * (data.reshape(-1, 1) - means)**2).sum(axis=0) / s).clip(min=1e-6)
 weights = s / n
 
 if (r.sum(axis=1) > 1 + tol).any() or (r.sum(axis=1) < 1 - tol).any():
 raise ValueError("Row normalization failed")
 
 return weights, means, covariances
def display_parameters(true_params, estimated_params):
 true_weights, true_means, true_covariances = true_params
 est_weights, est_means, est_covariances = estimated_params
 
 true_df = pd.DataFrame({
 'Component': range(len(true_weights)),
 'True Weight': true_weights,
 'True Mean': true_means,
 'True Covariance': true_covariances
 })
 
 est_df = pd.DataFrame({
 'Estimated Weight': est_weights,
 'Estimated Mean': est_means,
 'Estimated Covariance': est_covariances
 })
 
 result_df = pd.concat([true_df, est_df], axis=1)
 print(result_df.to_string(index=False))
def main():
 true_weights = np.array([0.4, 0.6])
 true_means = np.array([0, 5])
 true_covariances = np.array([1, 1])
 n_samples = 1000
 
 data = np.concatenate([
 np.random.normal(true_means[0], np.sqrt(true_covariances[0]), int(true_weights[0] * n_samples)),
 np.random.normal(true_means[1], np.sqrt(true_covariances[1]), int(true_weights[1] * n_samples))
 ])
 
 estimated_weights, estimated_means, estimated_covariances = fit_mixture_of_normals(data, len(true_weights))
 
 true_params = (true_weights, true_means, true_covariances)
 estimated_params = (estimated_weights, estimated_means, estimated_covariances)
 
 display_parameters(true_params, estimated_params)
if __name__ == "__main__":
 main()

About

Python script that uses LLMs on Groq to create Python programs, iterating until they run to completion

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

AltStyle によって変換されたページ (->オリジナル) /