FFmpeg: libavfilter/vf_datascope.c Source File
Go to the documentation of this file. 1 /*
2 * Copyright (c) 2016 Paul B Mahol
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
31
41
50
55
56 #define OFFSET(x) offsetof(DatascopeContext, x)
57 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
58 #define FLAGSR AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
59
76 };
77
79
83 {
86 }
87
89 int x0, int y0, const uint8_t *text, int vertical)
90 {
92 int x = x0;
93
94 for (; *text; text++) {
95 if (*text == '\n') {
96 x = x0;
97 y0 += 8;
98 continue;
99 }
102 &cga_font[*text * 8], 1, 8, 8, 0, 0, x, y0);
103 if (vertical) {
104 x = x0;
105 y0 += 8;
106 } else {
107 x += 8;
108 }
109 }
110 }
111
113 {
115
116 color->rgba[3] = 255;
117 for (
p = 0;
p <
draw->nb_planes;
p++) {
118 if (
draw->nb_planes == 1) {
119 for (
i = 0;
i < 4;
i++) {
122 }
123 } else {
126 }
127 }
128 }
129
131 {
133
134 color->rgba[3] = 255;
135 for (
p = 0;
p <
draw->nb_planes;
p++) {
136 if (
draw->nb_planes == 1) {
137 for (
i = 0;
i < 4;
i++) {
140 }
141 } else {
144 }
145 }
146 }
147
149 {
151
152 reverse->
rgba[3] = 255;
153 for (
p = 0;
p <
draw->nb_planes;
p++) {
154 reverse->
comp[
p].
u8[0] =
color->comp[
p].u8[0] > 127 ? 0 : 255;
155 reverse->
comp[
p].
u8[1] =
color->comp[
p].u8[1] > 127 ? 0 : 255;
156 reverse->
comp[
p].
u8[2] =
color->comp[
p].u8[2] > 127 ? 0 : 255;
157 }
158 }
159
161 {
163
164 reverse->
rgba[3] = 255;
165 for (
p = 0;
p <
draw->nb_planes;
p++) {
166 const unsigned max = (1 <<
draw->desc->comp[
p].depth) - 1;
167 const unsigned mid = (
max + 1) / 2;
168
172 }
173 }
174
179
181 {
188 const int PP = td->
PP;
189 const int xoff = td->
xoff;
190 const int yoff = td->
yoff;
191 const int P =
FFMAX(
s->nb_planes,
s->nb_comps);
192 const int C =
s->chars;
193 const int D = ((
s->chars -
s->dformat) >> 2) +
s->dformat * 2;
194 const int W = (outlink->
w - xoff) / (
C * 10);
195 const int H = (outlink->
h - yoff) / (PP * 12);
196 const char *
format[4] = {
"%02X\n",
"%04X\n",
"%03d\n",
"%05d\n"};
198 const int slice_end = (
W * (jobnr+1)) / nb_jobs;
200
201 for (y = 0; y <
H && (y +
s->y <
inlink->h); y++) {
205 int value[4] = { 0 }, pp = 0;
206
208 s->reverse_color(&
s->draw, &
color, &reverse);
210 xoff + x *
C * 10, yoff + y * PP * 12,
C * 10, PP * 12);
211
212 for (
p = 0;
p <
P;
p++) {
213 char text[256];
214
215 if (!(
s->components & (1 <<
p)))
216 continue;
218 draw_text(&
s->draw,
out, &reverse, xoff + x *
C * 10 + 2, yoff + y * PP * 12 + pp * 10 + 2, text, 0);
219 pp++;
220 }
221 }
222 }
223
224 return 0;
225 }
226
228 {
235 const int PP = td->
PP;
236 const int xoff = td->
xoff;
237 const int yoff = td->
yoff;
238 const int P =
FFMAX(
s->nb_planes,
s->nb_comps);
239 const int C =
s->chars;
240 const int D = ((
s->chars -
s->dformat) >> 2) +
s->dformat * 2;
241 const int W = (outlink->
w - xoff) / (
C * 10);
242 const int H = (outlink->
h - yoff) / (PP * 12);
243 const char *
format[4] = {
"%02X\n",
"%04X\n",
"%03d\n",
"%05d\n"};
245 const int slice_end = (
W * (jobnr+1)) / nb_jobs;
247
248 for (y = 0; y <
H && (y +
s->y <
inlink->h); y++) {
251 int value[4] = { 0 }, pp = 0;
252
254
255 for (
p = 0;
p <
P;
p++) {
256 char text[256];
257
258 if (!(
s->components & (1 <<
p)))
259 continue;
261 draw_text(&
s->draw,
out, &
color, xoff + x *
C * 10 + 2, yoff + y * PP * 12 + pp * 10 + 2, text, 0);
262 pp++;
263 }
264 }
265 }
266
267 return 0;
268 }
269
271 {
278 const int PP = td->
PP;
279 const int xoff = td->
xoff;
280 const int yoff = td->
yoff;
281 const int P =
FFMAX(
s->nb_planes,
s->nb_comps);
282 const int C =
s->chars;
283 const int D = ((
s->chars -
s->dformat) >> 2) +
s->dformat * 2;
284 const int W = (outlink->
w - xoff) / (
C * 10);
285 const int H = (outlink->
h - yoff) / (PP * 12);
286 const char *
format[4] = {
"%02X\n",
"%04X\n",
"%03d\n",
"%05d\n"};
288 const int slice_end = (
W * (jobnr+1)) / nb_jobs;
290
291 for (y = 0; y <
H && (y +
s->y <
inlink->h); y++) {
294 int value[4] = { 0 }, pp = 0;
295
297 for (
p = 0;
p <
P;
p++) {
298 char text[256];
299
300 if (!(
s->components & (1 <<
p)))
301 continue;
303 draw_text(&
s->draw,
out, &
s->white, xoff + x *
C * 10 + 2, yoff + y * PP * 12 + pp * 10 + 2, text, 0);
304 pp++;
305 }
306 }
307 }
308
309 return 0;
310 }
311
313 {
317 const int P =
FFMAX(
s->nb_planes,
s->nb_comps);
319 int ymaxlen = 0;
320 int xmaxlen = 0;
321 int PP = 0;
323
328 }
330
332 0, 0, outlink->
w, outlink->
h);
333
334 for (
int p = 0;
p <
P;
p++) {
335 if (
s->components & (1 <<
p))
336 PP++;
337 }
339
341 const int C =
s->chars;
342 int Y = outlink->
h / (PP * 12);
343 int X = outlink->
w / (
C * 10);
344 char text[256] = { 0 };
345 int x, y;
346
348 ymaxlen = strlen(text);
349 ymaxlen *= 10;
351 xmaxlen = strlen(text);
352 xmaxlen *= 10;
353
354 Y = (outlink->
h - xmaxlen) / (PP * 12);
355 X = (outlink->
w - ymaxlen) / (
C * 10);
356
357 for (y = 0; y <
Y; y++) {
358 snprintf(text,
sizeof(text),
"%d",
s->y + y);
359
361 0, xmaxlen + y * PP * 12 + (PP + 1) * PP - 2, ymaxlen, 10);
362
363 draw_text(&
s->draw,
out, &
s->yellow, 2, xmaxlen + y * PP * 12 + (PP + 1) * PP, text, 0);
364 }
365
366 for (x = 0; x <
X; x++) {
367 snprintf(text,
sizeof(text),
"%d",
s->x + x);
368
370 ymaxlen + x *
C * 10 + 2 *
C - 2, 0, 10, xmaxlen);
371
372 draw_text(&
s->draw,
out, &
s->yellow, ymaxlen + x *
C * 10 + 2 *
C, 2, text, 1);
373 }
374 }
375
379
382 }
383
385 {
388
389 uint8_t
alpha =
s->opacity * 255;
391
397 }
402 s->chars = (
s->draw.desc->comp[0].depth + 7) / 8 * 2 +
s->dformat;
403 s->nb_comps =
s->draw.desc->nb_components;
404
409 }
410
411 if (
s->draw.desc->comp[0].depth <= 8) {
414 } else {
417 }
418
419 return 0;
420 }
421
423 {
425
429
430 return 0;
431 }
432
434 char *res,
int res_len,
int flags)
435 {
437
441
443 }
444
446 {
451 },
452 };
453
455 {
459 },
460 };
461
463 .
p.
name =
"datascope",
465 .p.priv_class = &datascope_class,
472 };
473
476
481
484
497
499
502
503 #define POFFSET(x) offsetof(PixscopeContext, x)
504
514 };
515
517
519 {
523
529 }
536 s->nb_comps =
s->draw.desc->nb_components;
538
540 s->colors[0] = &
s->red;
541 s->colors[1] = &
s->green;
542 s->colors[2] = &
s->blue;
543 s->colors[3] = &
s->white;
545 } else {
546 s->colors[0] = &
s->white;
547 s->colors[1] = &
s->blue;
548 s->colors[2] = &
s->red;
549 s->colors[3] = &
s->white;
554 }
555
556 if (
s->draw.desc->comp[0].depth <= 8) {
558 } else {
560 }
561
565 }
566
575 }
576
577 return 0;
578 }
579
580 #define SQR(x) ((x)*(x))
581
583 {
588 int max[4] = { 0 },
min[4] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX };
589 float average[4] = { 0 };
590 double std[4] = { 0 }, rms[4] = { 0 };
591 const char rgba[4] = { 'R', 'G', 'B', 'A' };
592 const char yuva[4] = { 'Y', 'U', 'V', 'A' };
593 int x, y,
X,
Y,
i,
w,
h;
594 char text[128];
595
599 }
602
605
608 } else {
610 }
613 } else {
615 }
616
618 if (
s->x +
s->w >=
X && (
s->x +
s->w <=
X +
s->ww) &&
619 s->y +
s->h >=
Y && (
s->y +
s->h <=
Y +
s->wh)) {
620 X = (in->
width -
s->ww) * (1 +
s->wx);
621 }
622 }
623
625 if (
s->x +
s->w >=
X && (
s->x +
s->w <=
X +
s->ww) &&
626 s->y +
s->h >=
Y && (
s->y +
s->h <=
Y +
s->wh)) {
628 }
629 }
630
637
638 for (y = 0; y <
s->h; y++) {
639 for (x = 0; x <
s->w; x++) {
641 int value[4] = { 0 };
642
645 x *
w + (
s->ww - 4 - (
s->w *
w)) / 2 +
X, y *
h + 2 +
Y,
w,
h);
646 for (
i = 0;
i < 4;
i++) {
652 }
653 }
654 }
655
658 s->x - 2,
s->y - 2,
s->w + 4, 1);
659
662 s->x - 1,
s->y - 1,
s->w + 2, 1);
663
666 s->x - 1,
s->y - 1, 1,
s->h + 2);
667
670 s->x - 2,
s->y - 2, 1,
s->h + 4);
671
674 s->x - 1,
s->y + 1 +
s->h,
s->w + 3, 1);
675
678 s->x - 2,
s->y + 2 +
s->h,
s->w + 4, 1);
679
682 s->x + 1 +
s->w,
s->y - 1, 1,
s->h + 2);
683
686 s->x + 2 +
s->w,
s->y - 2, 1,
s->h + 5);
687
688 for (
i = 0;
i < 4;
i++) {
689 rms[
i] /=
s->w *
s->h;
690 rms[
i] = sqrt(rms[
i]);
691 average[
i] /=
s->w *
s->h;
692 }
693
694 for (y = 0; y <
s->h; y++) {
695 for (x = 0; x <
s->w; x++) {
696 for (
i = 0;
i < 4;
i++)
697 std[
i] +=
SQR(
s->values[
i][x][y] - average[
i]);
698 }
699 }
700
701 for (
i = 0;
i < 4;
i++) {
702 std[
i] /=
s->w *
s->h;
703 std[
i] = sqrt(std[
i]);
704 }
705
706 snprintf(text,
sizeof(text),
"CH AVG MIN MAX RMS\n");
708 for (
i = 0;
i <
s->nb_comps;
i++) {
709 int c =
s->rgba_map[
i];
710
711 snprintf(text,
sizeof(text),
"%c %07.1f %05d %05d %07.1f\n",
s->is_rgb ? rgba[
i] : yuva[
i], average[
c],
min[
c],
max[
c], rms[
c]);
713 }
714 snprintf(text,
sizeof(text),
"CH STD\n");
716 for (
i = 0;
i <
s->nb_comps;
i++) {
717 int c =
s->rgba_map[
i];
718
719 snprintf(text,
sizeof(text),
"%c %07.2f\n",
s->is_rgb ? rgba[
i] : yuva[
i], std[
c]);
721 }
722
725 }
726
728 char *res,
int res_len,
int flags)
729 {
731
735
737 }
738
740 {
745 },
746 };
747
749 .
p.
name =
"pixscope",
751 .p.priv_class = &pixscope_class,
758 };
759
763
766
777
781
798
801
805
806 #define OOFFSET(x) offsetof(OscilloscopeContext, x)
807
823 };
824
826
828 {
830
832 }
833
836 {
837 int dx =
FFABS(
x1 - x0), sx = x0 <
x1 ? 1 : -1;
838 int dy =
FFABS(
y1 - y0), sy = y0 <
y1 ? 1 : -1;
839 int err = (dx > dy ? dx : -dy) / 2, e2;
841
842 for (;;) {
843 if (x0 >= 0 && y0 >= 0 && x0 < out->
width && y0 < out->
height) {
844 for (
p = 0;
p <
draw->nb_planes;
p++) {
845 if (
draw->desc->comp[
p].depth == 8) {
846 if (
draw->nb_planes == 1) {
847 for (
i = 0;
i <
draw->desc->nb_components;
i++) {
848 out->data[0][y0 *
out->linesize[0] + x0 *
draw->pixelstep[0] +
i] =
color->comp[0].u8[
i];
849 }
850 } else {
852 }
853 } else {
854 if (
draw->nb_planes == 1) {
855 for (
i = 0;
i <
draw->desc->nb_components;
i++) {
857 }
858 } else {
860 }
861 }
862 }
863 }
864
865 if (x0 ==
x1 && y0 ==
y1)
866 break;
867
868 e2 = err;
869
870 if (e2 >-dx) {
871 err -= dy;
872 x0 += sx;
873 }
874
875 if (e2 < dy) {
876 err += dx;
877 y0 += sy;
878 }
879 }
880 }
881
883 {
885
886 for (
i = 1;
i <
s->nb_values;
i++) {
887 for (
c = 0;
c <
s->nb_comps;
c++) {
888 if ((1 <<
c) &
s->components) {
889 int x =
i *
s->width /
s->nb_values;
890 int px = (
i - 1) *
s->width /
s->nb_values;
891 int py =
s->height -
s->values[
i-1].p[
s->rgba_map[
c]] *
s->height / 256;
892 int y =
s->height -
s->values[
i].p[
s->rgba_map[
c]] *
s->height / 256;
893
895 }
896 }
897 }
898 }
899
900
902 {
904
905 for (
i = 1;
i <
s->nb_values;
i++) {
906 for (
c = 0;
c <
s->nb_comps;
c++) {
907 if ((1 <<
c) &
s->components) {
908 int x =
i *
s->width /
s->nb_values;
909 int px = (
i - 1) *
s->width /
s->nb_values;
910 int py =
s->height -
s->values[
i-1].p[
s->rgba_map[
c]] *
s->height /
s->max;
911 int y =
s->height -
s->values[
i].p[
s->rgba_map[
c]] *
s->height /
s->max;
912
914 }
915 }
916 }
917 }
918
920 {
925
932 cx =
s->xpos * (
inlink->w - 1);
933 cy =
s->ypos * (
inlink->h - 1);
940 }
941
943 {
948
954 }
963 s->nb_comps =
s->draw.desc->nb_components;
965
967 s->colors[0] = &
s->red;
968 s->colors[1] = &
s->green;
969 s->colors[2] = &
s->blue;
970 s->colors[3] = &
s->white;
972 } else {
973 s->colors[0] = &
s->white;
974 s->colors[1] = &
s->cyan;
975 s->colors[2] = &
s->magenta;
976 s->colors[3] = &
s->white;
981 }
982
983 if (
s->draw.desc->comp[0].depth <= 8) {
986 } else {
989 }
990
991 s->max = (1 <<
s->draw.desc->comp[0].depth);
993
997
999
1000 return 0;
1001 }
1002
1005 {
1006 int dx =
FFABS(
x1 - x0), sx = x0 <
x1 ? 1 : -1;
1007 int dy =
FFABS(
y1 - y0), sy = y0 <
y1 ? 1 : -1;
1008 int err = (dx > dy ? dx : -dy) / 2, e2;
1009
1010 for (;;) {
1011 if (x0 >= 0 && y0 >= 0 && x0 < out->
width && y0 < out->
height) {
1013 int value[4] = { 0 };
1014
1016 s->values[
s->nb_values].p[0] =
value[0];
1017 s->values[
s->nb_values].p[1] =
value[1];
1018 s->values[
s->nb_values].p[2] =
value[2];
1019 s->values[
s->nb_values].p[3] =
value[3];
1021
1023 if (
s->draw.desc->comp[0].depth == 8) {
1024 if (
s->draw.nb_planes == 1) {
1026
1027 for (
i = 0;
i <
s->nb_comps;
i++)
1028 out->data[0][
out->linesize[0] * y0 + x0 *
s->draw.pixelstep[0] +
i] = 255 * ((
s->nb_values +
state) & 1);
1029 } else {
1030 out->data[0][
out->linesize[0] * y0 + x0] = 255 * ((
s->nb_values +
state) & 1);
1031 }
1032 } else {
1033 if (
s->draw.nb_planes == 1) {
1035
1036 for (
i = 0;
i <
s->nb_comps;
i++)
1037 AV_WN16(
out->data[0] +
out->linesize[0] * y0 + x0 *
s->draw.pixelstep[0] +
i, (
s->max - 1) * ((
s->nb_values +
state) & 1));
1038 } else {
1039 AV_WN16(
out->data[0] +
out->linesize[0] * y0 + 2 * x0, (
s->max - 1) * ((
s->nb_values +
state) & 1));
1040 }
1041 }
1042 }
1043 }
1044
1045 if (x0 ==
x1 && y0 ==
y1)
1046 break;
1047
1048 e2 = err;
1049
1050 if (e2 >-dx) {
1051 err -= dy;
1052 x0 += sx;
1053 }
1054
1055 if (e2 < dy) {
1056 err += dx;
1057 y0 += sy;
1058 }
1059 }
1060 }
1061
1063 {
1068 float average[4] = { 0 };
1070 int min[4] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX };
1072
1077 s->ox,
s->oy,
s->width,
s->height + 20 *
s->statistics);
1078
1079 if (
s->grid && outlink->
h >= 10) {
1081 s->ox,
s->oy,
s->width - 1, 1);
1082
1083 for (
i = 1;
i < 5;
i++) {
1085 s->ox,
s->oy +
i * (
s->height - 1) / 4,
s->width, 1);
1086 }
1087
1088 for (
i = 0;
i < 10;
i++) {
1090 s->ox +
i * (
s->width - 1) / 10,
s->oy, 1,
s->height);
1091 }
1092
1094 s->ox +
s->width - 1,
s->oy, 1,
s->height);
1095 }
1096
1098
1099 for (
i = 0;
i <
s->nb_values;
i++) {
1100 for (
c = 0;
c <
s->nb_comps;
c++) {
1101 if ((1 <<
c) &
s->components) {
1104 average[
c] +=
s->values[
i].p[
s->rgba_map[
c]];
1105 }
1106 }
1107 }
1108 for (
c = 0;
c <
s->nb_comps;
c++) {
1109 average[
c] /=
s->nb_values;
1110 }
1111
1112 if (
s->statistics &&
s->height > 10 &&
s->width > 280 *
av_popcount(
s->components)) {
1113 for (
c = 0,
i = 0;
c <
s->nb_comps;
c++) {
1114 if ((1 <<
c) &
s->components) {
1115 const char rgba[4] = { 'R', 'G', 'B', 'A' };
1116 const char yuva[4] = { 'Y', 'U', 'V', 'A' };
1117 char text[128];
1118
1119 snprintf(text,
sizeof(text),
"%c avg:%.1f min:%d max:%d\n",
s->is_rgb ? rgba[
c] : yuva[
c], average[
c],
min[
c],
max[
c]);
1121 }
1122 }
1123 }
1124
1126 }
1127
1129 char *res,
int res_len,
int flags)
1130 {
1132
1136
1138
1139 return 0;
1140 }
1141
1143 {
1149 },
1150 };
1151
1153 .
p.
name =
"oscilloscope",
1155 .p.priv_class = &oscilloscope_class,
1163 };
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define AV_LOG_WARNING
Something somehow does not look correct.
static void reverse_color8(FFDrawContext *draw, FFDrawColor *color, FFDrawColor *reverse)
static const AVFilterPad pixscope_inputs[]
static int filter_mono(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Filter the word "frame" indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int pixscope_process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static int filter_color2(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define FILTER_INPUTS(array)
This structure describes decoded (raw) audio or video data.
const FFFilter ff_vf_datascope
const char * name
Filter name.
static void pick_color8(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
A link between two filters.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Link properties exposed to filter code, but not external callers.
void(* draw_trace)(struct OscilloscopeContext *s, AVFrame *frame)
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
static int slice_end(AVCodecContext *avctx, AVFrame *pict, int *got_output)
Handle slice ends.
void * priv
private data for use by the filter
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
void ff_blend_mask(FFDrawContext *draw, FFDrawColor *color, uint8_t *dst[], int dst_linesize[], int dst_w, int dst_h, const uint8_t *mask, int mask_linesize, int mask_w, int mask_h, int l2depth, unsigned endianness, int x0, int y0)
Blend an alpha mask with an uniform color.
void(* reverse_color)(FFDrawContext *draw, FFDrawColor *color, FFDrawColor *reverse)
A filter pad used for either input or output.
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static void update_oscilloscope(AVFilterContext *ctx)
uint16_t values[4][80][80]
const AVFilterPad ff_video_default_filterpad[1]
An AVFilterPad array whose only entry has name "default" and is of type AVMEDIA_TYPE_VIDEO.
static int filter_color(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
int(* filter)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static void oscilloscope_uninit(AVFilterContext *ctx)
static int config_input(AVFilterLink *inlink)
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
static const AVFilterPad inputs[]
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
int ff_draw_init(FFDrawContext *draw, enum AVPixelFormat format, unsigned flags)
static void pick_color16(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
#define FILTER_OUTPUTS(array)
static void reverse_color16(FFDrawContext *draw, FFDrawColor *color, FFDrawColor *reverse)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Describe the class of an AVClass context structure.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
New swscale design to change SwsGraph is what coordinates multiple passes These can include cascaded scaling error diffusion and so on Or we could have separate passes for the vertical and horizontal scaling In between each SwsPass lies a fully allocated image buffer Graph passes may have different levels of e g we can have a single threaded error diffusion pass following a multi threaded scaling pass SwsGraph is internally recreated whenever the image format
Rational number (pair of numerator and denominator).
@ AV_OPT_TYPE_IMAGE_SIZE
Underlying C type is two consecutive integers.
static const AVOption datascope_options[]
static const AVOption oscilloscope_options[]
void(* pick_color)(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
static void draw_trace8(OscilloscopeContext *s, AVFrame *frame)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static FilterLink * ff_filter_link(AVFilterLink *link)
AVFILTER_DEFINE_CLASS(datascope)
static void draw_trace16(OscilloscopeContext *s, AVFrame *frame)
#define AVFILTERPAD_FLAG_NEEDS_WRITABLE
The filter expects writable frames from its input link, duplicating data buffers if needed.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
#define AV_PIX_FMT_FLAG_RGB
The pixel format contains RGB-like data (as opposed to YUV/grayscale).
void ff_blend_rectangle(FFDrawContext *draw, FFDrawColor *color, uint8_t *dst[], int dst_linesize[], int dst_w, int dst_h, int x0, int y0, int w, int h)
Blend a rectangle with an uniform color.
int av_frame_copy(AVFrame *dst, const AVFrame *src)
Copy the frame data from src to dst.
static int oscilloscope_process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
static av_const double hypot(double x, double y)
union FFDrawColor::@357 comp[MAX_PLANES]
static const AVFilterPad outputs[]
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
const uint8_t * avpriv_cga_font_get(void)
static void draw_text(FFDrawContext *draw, AVFrame *frame, FFDrawColor *color, int x0, int y0, const uint8_t *text, int vertical)
static const AVFilterPad oscilloscope_inputs[]
void ff_fill_rectangle(FFDrawContext *draw, FFDrawColor *color, uint8_t *dst[], int dst_linesize[], int dst_x, int dst_y, int w, int h)
Fill a rectangle with an uniform color.
AVFilterContext * src
source filter
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
static int pixscope_filter_frame(AVFilterLink *inlink, AVFrame *in)
const FFFilter ff_vf_oscilloscope
void(* pick_color)(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
static int draw(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
@ AV_OPT_TYPE_FLOAT
Underlying C type is float.
static void uninit(AVBSFContext *ctx)
#define i(width, name, range_min, range_max)
int w
agreed upon image width
AVFilterFormats * ff_draw_supported_pixel_formats(unsigned flags)
Return the list of pixel formats supported by the draw functions.
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Used for passing data between threads.
#define FILTER_QUERY_FUNC2(func)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
const char * name
Pad name.
void * av_calloc(size_t nmemb, size_t size)
void ff_draw_color(FFDrawContext *draw, FFDrawColor *color, const uint8_t rgba[4])
Prepare a color.
static int slice_start(SliceContext *sc, VVCContext *s, VVCFrameContext *fc, const CodedBitstreamUnit *unit, const int is_first_slice)
void(* pick_color)(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
int h
agreed upon image height
int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
@ AV_OPT_TYPE_INT
Underlying C type is int.
IDirect3DDxgiInterfaceAccess _COM_Outptr_ void ** p
int ff_draw_init_from_link(FFDrawContext *draw, const AVFilterLink *link, unsigned flags)
Init a draw context, taking the format, colorspace and range from the given filter link.
const FFFilter ff_vf_pixscope
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
AVFilter p
The public AVFilter.
static void draw_scope(OscilloscopeContext *s, int x0, int y0, int x1, int y1, AVFrame *out, PixelValues *p, int state)
static const int16_t alpha[]
static int config_output(AVFilterLink *outlink)
@ AV_OPT_TYPE_BOOL
Underlying C type is int.
static void draw_line(FFDrawContext *draw, int x0, int y0, int x1, int y1, AVFrame *out, FFDrawColor *color)
static const AVOption pixscope_options[]
static int pixscope_config_input(AVFilterLink *inlink)
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
static int query_formats(const AVFilterContext *ctx, AVFilterFormatsConfig **cfg_in, AVFilterFormatsConfig **cfg_out)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
static int oscilloscope_filter_frame(AVFilterLink *inlink, AVFrame *frame)
int64_t frame_count_in
Number of past frames sent through the link.
static int oscilloscope_config_input(AVFilterLink *inlink)
Generated on Wed Nov 19 2025 19:22:55 for FFmpeg by
doxygen
1.8.17