1 /*
2 * AAC encoder psychoacoustic model
3 * Copyright (C) 2008 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * AAC encoder psychoacoustic model
25 */
26
30
34
35 /***********************************
36 * TODOs:
37 * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
38 * control quality for quality-based output
39 **********************************/
40
41 /**
42 * constants for 3GPP AAC psychoacoustic model
43 * @{
44 */
45 #define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark)
46 #define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark)
47 /* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */
48 #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
49 /* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */
50 #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
51 /* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */
52 #define PSY_3GPP_EN_SPREAD_HI_S 1.5f
53 /* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */
54 #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
55 /* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */
56 #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
57
58 #define PSY_3GPP_RPEMIN 0.01f
59 #define PSY_3GPP_RPELEV 2.0f
60
61 #define PSY_3GPP_C1 3.0f /* log2(8) */
62 #define PSY_3GPP_C2 1.3219281f /* log2(2.5) */
63 #define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */
64
65 #define PSY_SNR_1DB 7.9432821e-1f /* -1dB */
66 #define PSY_SNR_25DB 3.1622776e-3f /* -25dB */
67
68 #define PSY_3GPP_SAVE_SLOPE_L -0.46666667f
69 #define PSY_3GPP_SAVE_SLOPE_S -0.36363637f
70 #define PSY_3GPP_SAVE_ADD_L -0.84285712f
71 #define PSY_3GPP_SAVE_ADD_S -0.75f
72 #define PSY_3GPP_SPEND_SLOPE_L 0.66666669f
73 #define PSY_3GPP_SPEND_SLOPE_S 0.81818181f
74 #define PSY_3GPP_SPEND_ADD_L -0.35f
75 #define PSY_3GPP_SPEND_ADD_S -0.26111111f
76 #define PSY_3GPP_CLIP_LO_L 0.2f
77 #define PSY_3GPP_CLIP_LO_S 0.2f
78 #define PSY_3GPP_CLIP_HI_L 0.95f
79 #define PSY_3GPP_CLIP_HI_S 0.75f
80
81 #define PSY_3GPP_AH_THR_LONG 0.5f
82 #define PSY_3GPP_AH_THR_SHORT 0.63f
83
84 #define PSY_PE_FORGET_SLOPE 511
85
86 enum {
90 };
91
92 #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
93 #define PSY_3GPP_PE_TO_BITS(bits) ((bits) / 1.18f)
94
95 /* LAME psy model constants */
96 #define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order
97 #define AAC_BLOCK_SIZE_LONG 1024
///< long block size
98 #define AAC_BLOCK_SIZE_SHORT 128
///< short block size
99 #define AAC_NUM_BLOCKS_SHORT 8
///< number of blocks in a short sequence
100 #define PSY_LAME_NUM_SUBBLOCKS 3
///< Number of sub-blocks in each short block
101
102 /**
103 * @}
104 */
105
106 /**
107 * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
108 */
111 float thr;
///< energy threshold
113 float nz_lines;
///< number of non-zero spectral lines
115 float pe;
///< perceptual entropy
116 float pe_const;
///< constant part of the PE calculation
117 float norm_fac;
///< normalization factor for linearization
120
121 /**
122 * single/pair channel context for psychoacoustic model
123 */
127
130 uint8_t
next_grouping;
///< stored grouping scheme for the next frame (in case of 8 short window sequence)
132 /* LAME psy model specific members */
135 int prev_attack;
///< attack value for the last short block in the previous sequence
137
138 /**
139 * psychoacoustic model frame type-dependent coefficients
140 */
142 float ath;
///< absolute threshold of hearing per bands
143 float barks;
///< Bark value for each spectral band in long frame
144 float spread_low[2];
///< spreading factor for low-to-high threshold spreading in long frame
145 float spread_hi [2];
///< spreading factor for high-to-low threshold spreading in long frame
148
149 /**
150 * 3GPP TS26.403-inspired psychoacoustic model specific data
151 */
156 struct {
157 float min;
///< minimum allowed PE for bit factor calculation
158 float max;
///< maximum allowed PE for bit factor calculation
159 float previous;
///< allowed PE of the previous frame
166
167 /**
168 * LAME psy model preset struct
169 */
171 int quality;
///< Quality to map the rest of the vaules to.
172 /* This is overloaded to be both kbps per channel in ABR mode, and
173 * requested quality in constant quality mode.
174 */
175 float st_lrm;
///< short threshold for L, R, and M channels
177
178 /**
179 * LAME psy model preset table for ABR
180 */
182 /* TODO: Tuning. These were taken from LAME. */
183 /* kbps/ch st_lrm */
184 { 8, 6.60},
185 { 16, 6.60},
186 { 24, 6.60},
187 { 32, 6.60},
188 { 40, 6.60},
189 { 48, 6.60},
190 { 56, 6.60},
191 { 64, 6.40},
192 { 80, 6.00},
193 { 96, 5.60},
194 {112, 5.20},
195 {128, 5.20},
196 {160, 5.20}
197 };
198
199 /**
200 * LAME psy model preset table for constant quality
201 */
203 /* vbr_q st_lrm */
204 { 0, 4.20},
205 { 1, 4.20},
206 { 2, 4.20},
207 { 3, 4.20},
208 { 4, 4.20},
209 { 5, 4.20},
210 { 6, 4.20},
211 { 7, 4.20},
212 { 8, 4.20},
213 { 9, 4.20},
214 {10, 4.20}
215 };
216
217 /**
218 * LAME psy model FIR coefficient table
219 */
221 -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
222 -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2,
223 -5.52212e-17 * 2, -0.313819 * 2
224 };
225
226 /**
227 * Calculate the ABR attack threshold from the above LAME psymodel table.
228 */
230 {
231 /* Assume max bitrate to start with */
232 int lower_range = 12, upper_range = 12;
236
237 /* Determine which bitrates the value specified falls between.
238 * If the loop ends without breaking our above assumption of 320kbps was correct.
239 */
240 for (
i = 1;
i < 13;
i++) {
246 break; /* Upper range found */
247 }
248 }
249
250 /* Determine which range the value specified is closer to */
254 }
255
256 /**
257 * LAME psy model specific initialization
258 */
260 {
262
265
268 else
270
273 }
274 }
275
276 /**
277 * Calculate Bark value for given line.
278 */
280 {
281 return 13.3f *
atanf(0.00076
f *
f) + 3.5f *
atanf((
f / 7500.0
f) * (
f / 7500.0
f));
282 }
283
285 /**
286 * Calculate ATH value for given frequency.
287 * Borrowed from Lame.
288 */
290 {
292 return 3.64 * pow(
f, -0.8)
293 - 6.8 *
exp(-0.6 * (
f - 3.4) * (
f - 3.4))
294 + 6.0 *
exp(-0.15 * (
f - 8.7) * (
f - 8.7))
295 + (0.6 + 0.04 * add) * 0.001 *
f *
f *
f *
f;
296 }
297
300 float bark;
302 float prev, minscale, minath, minsnr, pe_min;
304
306 const float num_bark =
calc_bark((
float)bandwidth);
307
308 if (bandwidth <= 0)
310
312 if (!
ctx->model_priv_data)
314 pctx =
ctx->model_priv_data;
316
318 /* Use the target average bitrate to compute spread parameters */
319 chan_bitrate = (int)(chan_bitrate / 120.0 * (
ctx->avctx->global_quality ?
ctx->avctx->global_quality : 120));
320 }
321
327 ctx->bitres.size -=
ctx->bitres.size % 8;
330 for (j = 0; j < 2; j++) {
332 const uint8_t *band_sizes =
ctx->bands[j];
333 float line_to_frequency =
ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
334 float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) /
ctx->avctx->sample_rate;
335 /* reference encoder uses 2.4% here instead of 60% like the spec says */
338 /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
340
342 prev = 0.0;
343 for (
g = 0;
g <
ctx->num_bands[j];
g++) {
346 coeffs[
g].
barks = (bark + prev) / 2.0;
347 prev = bark;
348 }
349 for (
g = 0;
g <
ctx->num_bands[j] - 1;
g++) {
351 float bark_width = coeffs[
g+1].
barks - coeffs->
barks;
354 coeff->spread_low[1] =
ff_exp10(-bark_width * en_spread_low);
356 pe_min = bark_pe * bark_width;
357 minsnr =
exp2(pe_min / band_sizes[
g]) - 1.5f;
359 }
360 start = 0;
361 for (
g = 0;
g <
ctx->num_bands[j];
g++) {
362 minscale =
ath(start * line_to_frequency,
ATH_ADD);
363 for (
i = 1;
i < band_sizes[
g];
i++)
365 coeffs[
g].
ath = minscale - minath;
366 start += band_sizes[
g];
367 }
368 }
369
374 }
375
377
378 return 0;
379 }
380
381 /**
382 * IIR filter used in block switching decision
383 */
385 {
387
392 }
393
394 /**
395 * window grouping information stored as bits (0 - new group, 1 - group continues)
396 */
398 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
399 };
400
401 /**
402 * Tell encoder which window types to use.
403 * @see 3GPP TS26.403 5.4.1 "Blockswitching"
404 */
406 const int16_t *audio,
407 const int16_t *la,
409 {
412 int attack_ratio = br <= 16000 ? 18 : 10;
415 uint8_t grouping = 0;
418
419 if (la) {
421 int switch_to_eight = 0;
422 float sum = 0.0, sum2 = 0.0;
423 int attack_n = 0;
424 int stay_short = 0;
425 for (
i = 0;
i < 8;
i++) {
426 for (j = 0; j < 128; j++) {
428 sum += v*v;
429 }
431 sum2 += sum;
432 }
433 for (
i = 0;
i < 8;
i++) {
434 if (
s[
i] > pch->win_energy * attack_ratio) {
436 switch_to_eight = 1;
437 break;
438 }
439 }
440 pch->win_energy = pch->win_energy*7/8 + sum2/64;
441
442 wi.window_type[1] = prev_type;
443 switch (prev_type) {
447 break;
450 grouping = pch->next_grouping;
452 break;
456 break;
462 break;
463 }
464
466 pch->next_window_seq = next_type;
467 } else {
468 for (
i = 0;
i < 3;
i++)
469 wi.window_type[
i] = prev_type;
471 }
472
473 wi.window_shape = 1;
475 wi.num_windows = 1;
476 wi.grouping[0] = 1;
477 } else {
478 int lastgrp = 0;
479 wi.num_windows = 8;
480 for (
i = 0;
i < 8;
i++) {
481 if (!((grouping >>
i) & 1))
483 wi.grouping[lastgrp]++;
484 }
485 }
486
487 return wi;
488 }
489
490 /* 5.6.1.2 "Calculation of Bit Demand" */
492 int short_window)
493 {
500 float clipped_pe, bit_save, bit_spend, bit_factor, fill_level, forgetful_min_pe;
501
504 fill_level =
av_clipf((
float)
ctx->fill_level /
size, clip_low, clip_high);
506 bit_save = (fill_level + bitsave_add) * bitsave_slope;
507 assert(bit_save <= 0.3f && bit_save >= -0.05000001
f);
508 bit_spend = (fill_level + bitspend_add) * bitspend_slope;
509 assert(bit_spend <= 0.5f && bit_spend >= -0.1
f);
510 /* The bit factor graph in the spec is obviously incorrect.
511 * bit_spend + ((bit_spend - bit_spend))...
512 * The reference encoder subtracts everything from 1, but also seems incorrect.
513 * 1 - bit_save + ((bit_spend + bit_save))...
514 * Hopefully below is correct.
515 */
516 bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (
ctx->pe.max -
ctx->pe.min)) * (clipped_pe -
ctx->pe.min);
517 /* NOTE: The reference encoder attempts to center pe max/min around the current pe.
518 * Here we do that by slowly forgetting pe.min when pe stays in a range that makes
519 * it unlikely (ie: above the mean)
520 */
524 ctx->pe.min =
FFMIN(pe, forgetful_min_pe);
525
526 /* NOTE: allocate a minimum of 1/8th average frame bits, to avoid
527 * reservoir starvation from producing zero-bit frames
528 */
530 ctx->frame_bits * bit_factor,
532 }
533
535 {
537
549 }
552 }
553
555 }
556
558 float active_lines)
559 {
560 float thr_avg, reduction;
561
562 if(active_lines == 0.0)
563 return 0;
564
565 thr_avg =
exp2f((
a - pe) / (4.0
f * active_lines));
566 reduction =
exp2f((
a - desired_pe) / (4.0
f * active_lines)) - thr_avg;
567
568 return FFMAX(reduction, 0.0
f);
569 }
570
572 float reduction)
573 {
574 float thr = band->
thr;
575
578 thr =
sqrtf(thr) + reduction;
579 thr *= thr;
580 thr *= thr;
581
582 /* This deviates from the 3GPP spec to match the reference encoder.
583 * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands
584 * that have hole avoidance on (active or inactive). It always reduces the
585 * threshold of bands with hole avoidance off.
586 */
590 }
591 }
592
593 return thr;
594 }
595
596 #ifndef calc_thr_3gpp
598 const uint8_t *band_sizes, const float *coefs, const int cutoff)
599 {
601 int start = 0, wstart = 0;
603 wstart = 0;
604 for (
g = 0;
g < num_bands;
g++) {
606
607 float form_factor = 0.0f;
608 float Temp;
610 if (wstart < cutoff) {
611 for (
i = 0;
i < band_sizes[
g];
i++) {
612 band->
energy += coefs[start+
i] * coefs[start+
i];
614 }
615 }
619
620 start += band_sizes[
g];
621 wstart += band_sizes[
g];
622 }
623 }
624 }
625 #endif /* calc_thr_3gpp */
626
627 #ifndef psy_hp_filter
629 {
632 float sum1, sum2;
634 sum2 = 0.0;
638 }
639 /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768.
640 * Tuning this for normalized floats would be difficult. */
641 hpfsmpl[
i] = (sum1 + sum2) * 32768.0
f;
642 }
643 }
644 #endif /* psy_hp_filter */
645
646 /**
647 * Calculate band thresholds as suggested in 3GPP TS26.403
648 */
651 {
655 float desired_bits, desired_pe, delta_pe, reduction=
NAN, spread_en[128] = {0};
656 float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
657 float pe = pctx->chan_bitrate > 32000 ? 0.0f :
FFMAX(50.0
f, 100.0
f - pctx->chan_bitrate * 100.0f / 32000.0f);
658 const int num_bands =
ctx->num_bands[wi->num_windows == 8];
659 const uint8_t *band_sizes =
ctx->bands[wi->num_windows == 8];
660 AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8];
663 const int cutoff = bandwidth * 2048 / wi->num_windows /
ctx->avctx->sample_rate;
664
665 //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
666 calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff);
667
668 //modify thresholds and energies - spread, threshold in quiet, pre-echo control
669 for (
w = 0;
w < wi->num_windows*16;
w += 16) {
671
672 /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */
673 spread_en[0] =
bands[0].energy;
674 for (
g = 1;
g < num_bands;
g++) {
676 spread_en[
w+
g] =
FFMAX(
bands[
g].energy, spread_en[
w+
g-1] * coeffs[
g].spread_hi[1]);
677 }
678 for (
g = num_bands - 2;
g >= 0;
g--) {
680 spread_en[
w+
g] =
FFMAX(spread_en[
w+
g], spread_en[
w+
g+1] * coeffs[
g].spread_low[1]);
681 }
682 //5.4.2.4 "Threshold in quiet"
683 for (
g = 0;
g < num_bands;
g++) {
685
687 //5.4.2.5 "Pre-echo control"
691
692 /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */
696
697 /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */
698 if (spread_en[
w+
g] * avoid_hole_thr > band->
energy || coeffs[
g].min_snr > 1.0f)
700 else
702 }
703 }
704
705 /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */
708 /* (2.5 * 120) achieves almost transparent rate, and we want to give
709 * ample room downwards, so we make that equivalent to QSCALE=2.4
710 */
711 desired_pe = pe * (
ctx->avctx->global_quality ?
ctx->avctx->global_quality : 120) / (2 * 2.5
f * 120.0
f);
714
715 /* PE slope smoothing */
716 if (
ctx->bitres.bits > 0) {
719 }
720
721 pctx->pe.max =
FFMAX(pe, pctx->pe.max);
722 pctx->pe.min =
FFMIN(pe, pctx->pe.min);
723 } else {
726
727 /* NOTE: PE correction is kept simple. During initial testing it had very
728 * little effect on the final bitrate. Probably a good idea to come
729 * back and do more testing later.
730 */
731 if (
ctx->bitres.bits > 0)
733 0.85f, 1.15f);
734 }
736 ctx->bitres.alloc = desired_bits;
737
738 if (desired_pe < pe) {
739 /* 5.6.1.3.4 "First Estimation of the reduction value" */
740 for (
w = 0;
w < wi->num_windows*16;
w += 16) {
742 pe = 0.0f;
744 active_lines = 0.0f;
745 for (
g = 0;
g < num_bands;
g++) {
747
749 /* recalculate PE */
753 }
754 }
755
756 /* 5.6.1.3.5 "Second Estimation of the reduction value" */
757 for (
i = 0;
i < 2;
i++) {
758 float pe_no_ah = 0.0f, desired_pe_no_ah;
759 active_lines =
a = 0.0f;
760 for (
w = 0;
w < wi->num_windows*16;
w += 16) {
761 for (
g = 0;
g < num_bands;
g++) {
763
765 pe_no_ah += band->
pe;
768 }
769 }
770 }
771 desired_pe_no_ah =
FFMAX(desired_pe - (pe - pe_no_ah), 0.0
f);
772 if (active_lines > 0.0
f)
774
775 pe = 0.0f;
776 for (
w = 0;
w < wi->num_windows*16;
w += 16) {
777 for (
g = 0;
g < num_bands;
g++) {
779
780 if (active_lines > 0.0
f)
783 if (band->
thr > 0.0f)
785 else
788 }
789 }
790 delta_pe = desired_pe - pe;
791 if (
fabs(delta_pe) > 0.05
f * desired_pe)
792 break;
793 }
794
795 if (pe < 1.15
f * desired_pe) {
796 /* 6.6.1.3.6 "Final threshold modification by linearization" */
797 norm_fac = norm_fac ? 1.0f / norm_fac : 0;
798 for (
w = 0;
w < wi->num_windows*16;
w += 16) {
799 for (
g = 0;
g < num_bands;
g++) {
801
803 float delta_sfb_pe = band->
norm_fac * norm_fac * delta_pe;
804 float thr = band->
thr;
805
810 }
811 }
812 }
813 } else {
814 /* 5.6.1.3.7 "Further perceptual entropy reduction" */
816 while (pe > desired_pe &&
g--) {
817 for (
w = 0;
w < wi->num_windows*16;
w+= 16) {
823 }
824 }
825 }
826 /* TODO: allow more holes (unused without mid/side) */
827 }
828 }
829
830 for (
w = 0;
w < wi->num_windows*16;
w += 16) {
831 for (
g = 0;
g < num_bands;
g++) {
834
839 }
840 }
841
842 memcpy(pch->prev_band, pch->band, sizeof(pch->band));
843 }
844
847 {
848 int ch;
850
851 for (ch = 0; ch < group->
num_ch; ch++)
853 }
854
856 {
861 }
862
864 {
866 if (uselongblock) {
869 } else {
875 }
876
878 ctx->next_window_seq = blocktype;
879 }
880
882 const float *la,
int channel,
int prev_type)
883 {
886 int grouping = 0;
887 int uselongblock = 1;
891
892 if (la) {
894 const float *pf = hpfsmpl;
899 int att_sum = 0;
900
901 /* LAME comment: apply high pass filter of fs/4 */
903
904 /* Calculate the energies of each sub-shortblock */
909 energy_short[0] += energy_subshort[
i];
910 }
911
914 float p = 1.0f;
915 for (; pf < pfe; pf++)
919 /* NOTE: The indexes below are [i + 3 - 2] in the LAME source.
920 * Obviously the 3 and 2 have some significance, or this would be just [i + 1]
921 * (which is what we use here). What the 3 stands for is ambiguous, as it is both
922 * number of short blocks, and the number of sub-short blocks.
923 * It seems that LAME is comparing each sub-block to sub-block + 1 in the
924 * previous block.
925 */
926 if (p > energy_subshort[
i + 1])
927 p = p / energy_subshort[
i + 1];
928 else if (energy_subshort[
i + 1] > p * 10.0
f)
929 p = energy_subshort[
i + 1] / (p * 10.0f);
930 else
931 p = 0.0;
933 }
934
935 /* compare energy between sub-short blocks */
938 if (attack_intensity[
i] > pch->attack_threshold)
940
941 /* should have energy change between short blocks, in order to avoid periodic signals */
942 /* Good samples to show the effect are Trumpet test songs */
943 /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */
944 /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */
946 const float u = energy_short[
i - 1];
947 const float v = energy_short[
i];
948 const float m =
FFMAX(
u, v);
949 if (m < 40000) { /* (2) */
950 if (
u < 1.7
f * v && v < 1.7
f *
u) {
/* (1) */
951 if (
i == 1 && attacks[0] < attacks[
i])
952 attacks[0] = 0;
954 }
955 }
956 att_sum += attacks[
i];
957 }
958
959 if (attacks[0] <= pch->prev_attack)
960 attacks[0] = 0;
961
962 att_sum += attacks[0];
963 /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */
964 if (pch->prev_attack == 3 || att_sum) {
965 uselongblock = 0;
966
968 if (attacks[
i] && attacks[
i-1])
970 }
971 } else {
972 /* We have no lookahead info, so just use same type as the previous sequence. */
974 }
975
977
980
985 else
987
988 } else {
989 int lastgrp = 0;
990
993 for (
i = 0;
i < 8;
i++) {
994 if (!((pch->next_grouping >>
i) & 1))
997 }
998 }
999
1000 /* Determine grouping, based on the location of the first attack, and save for
1001 * the next frame.
1002 * FIXME: Move this to analysis.
1003 * TODO: Tune groupings depending on attack location
1004 * TODO: Handle more than one attack in a group
1005 */
1006 for (
i = 0;
i < 9;
i++) {
1009 break;
1010 }
1011 }
1013
1014 pch->prev_attack = attacks[8];
1015
1016 return wi;
1017 }
1018
1020 {
1021 .
name =
"3GPP TS 26.403-inspired model",
1026 };