1 /*
2 * WMA compatible decoder
3 * Copyright (c) 2002 The FFmpeg Project
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * WMA compatible decoder.
25 * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
26 * WMA v1 is identified by audio format 0x160 in Microsoft media files
27 * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
28 *
29 * To use this decoder, a calling application must supply the extra data
30 * bytes provided with the WMA data. These are the extra, codec-specific
31 * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
32 * to the decoder using the extradata[_size] fields in AVCodecContext. There
33 * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
34 */
35
36 #include "config_components.h"
37
40
46
48 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
49
50 #define HGAINVLCBITS 9
51 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
52
54
55 #ifdef TRACE
57 int prec,
const float *
tab,
int n)
58 {
60
62 for (
i = 0;
i < n;
i++) {
68 }
71 }
72 #endif /* TRACE */
73
75 {
78 uint8_t *extradata;
79
83 }
84
86
87 /* extract flag info */
88 flags2 = 0;
91 flags2 =
AV_RL16(extradata + 2);
93 flags2 =
AV_RL16(extradata + 4);
94
95 s->use_exp_vlc = flags2 & 0x0001;
96 s->use_bit_reservoir = flags2 & 0x0002;
97 s->use_variable_block_len = flags2 & 0x0004;
98
100 if (
AV_RL16(extradata+4)==0xd &&
s->use_variable_block_len){
101 av_log(avctx,
AV_LOG_WARNING,
"Disabling use_variable_block_len, if this fails contact the ffmpeg developers and send us the file\n");
102 s->use_variable_block_len= 0;
// this fixes issue1503
103 }
104 }
105
107 s->max_exponent[
i] = 1.0;
108
111
112 /* init MDCT */
113 for (
i = 0;
i <
s->nb_block_sizes;
i++) {
114 float scale = 1.0 / 32768.0;
119 }
120
121 if (
s->use_noise_coding) {
126 -18, 0, avctx);
129 }
130
131 if (
s->use_exp_vlc) {
132 // FIXME move out of context
138 } else
140
142
144
145 return 0;
146 }
147
148 /**
149 * compute x^-0.25 with an exponent and mantissa table. We use linear
150 * interpolation to reduce the mantissa table size at a small speed
151 * expense (linear interpolation approximately doubles the number of
152 * bits of precision).
153 */
155 {
156 union {
158 unsigned int v;
160 unsigned int e, m;
162
166 /* build interpolation scale: 1 <= t < 2. */
167 t.v = ((
u.v <<
LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
168 a =
s->lsp_pow_m_table1[m];
169 b =
s->lsp_pow_m_table2[m];
170 return s->lsp_pow_e_table[e] * (
a +
b * t.f);
171 }
172
174 {
177
178 wdel =
M_PI / frame_len;
179 for (
i = 0;
i < frame_len;
i++)
180 s->lsp_cos_table[
i] = 2.0f * cos(wdel *
i);
181
182 /* tables for x^-0.25 computation */
183 for (
i = 0;
i < 256;
i++) {
185 s->lsp_pow_e_table[
i] =
exp2f(e * -0.25);
186 }
187
188 /* NOTE: these two tables are needed to avoid two operations in
189 * pow_m1_4 */
195 s->lsp_pow_m_table1[
i] = 2 *
a -
b;
196 s->lsp_pow_m_table2[
i] =
b -
a;
198 }
199 }
200
201 /**
202 * NOTE: We use the same code as Vorbis here
203 * @todo optimize it further with SSE/3Dnow
204 */
206 int n, float *lsp)
207 {
209 float p, q,
w, v, val_max;
210
211 val_max = 0;
212 for (
i = 0;
i < n;
i++) {
213 p = 0.5f;
214 q = 0.5f;
215 w =
s->lsp_cos_table[
i];
219 }
222 v = p + q;
224 if (v > val_max)
225 val_max = v;
227 }
228 *val_max_ptr = val_max;
229 }
230
231 /**
232 * decode exponents coded with LSP coefficients (same idea as Vorbis)
233 */
235 {
238
240 if (
i == 0 ||
i >= 8)
242 else
245 }
246
248 s->block_len, lsp_coefs);
249 }
250
251 /** pow(10, i / 16.0) for i in -60..95 */
253 1.7782794100389e-04, 2.0535250264571e-04,
254 2.3713737056617e-04, 2.7384196342644e-04,
255 3.1622776601684e-04, 3.6517412725484e-04,
256 4.2169650342858e-04, 4.8696752516586e-04,
257 5.6234132519035e-04, 6.4938163157621e-04,
258 7.4989420933246e-04, 8.6596432336006e-04,
259 1.0000000000000e-03, 1.1547819846895e-03,
260 1.3335214321633e-03, 1.5399265260595e-03,
261 1.7782794100389e-03, 2.0535250264571e-03,
262 2.3713737056617e-03, 2.7384196342644e-03,
263 3.1622776601684e-03, 3.6517412725484e-03,
264 4.2169650342858e-03, 4.8696752516586e-03,
265 5.6234132519035e-03, 6.4938163157621e-03,
266 7.4989420933246e-03, 8.6596432336006e-03,
267 1.0000000000000e-02, 1.1547819846895e-02,
268 1.3335214321633e-02, 1.5399265260595e-02,
269 1.7782794100389e-02, 2.0535250264571e-02,
270 2.3713737056617e-02, 2.7384196342644e-02,
271 3.1622776601684e-02, 3.6517412725484e-02,
272 4.2169650342858e-02, 4.8696752516586e-02,
273 5.6234132519035e-02, 6.4938163157621e-02,
274 7.4989420933246e-02, 8.6596432336007e-02,
275 1.0000000000000e-01, 1.1547819846895e-01,
276 1.3335214321633e-01, 1.5399265260595e-01,
277 1.7782794100389e-01, 2.0535250264571e-01,
278 2.3713737056617e-01, 2.7384196342644e-01,
279 3.1622776601684e-01, 3.6517412725484e-01,
280 4.2169650342858e-01, 4.8696752516586e-01,
281 5.6234132519035e-01, 6.4938163157621e-01,
282 7.4989420933246e-01, 8.6596432336007e-01,
283 1.0000000000000e+00, 1.1547819846895e+00,
284 1.3335214321633e+00, 1.5399265260595e+00,
285 1.7782794100389e+00, 2.0535250264571e+00,
286 2.3713737056617e+00, 2.7384196342644e+00,
287 3.1622776601684e+00, 3.6517412725484e+00,
288 4.2169650342858e+00, 4.8696752516586e+00,
289 5.6234132519035e+00, 6.4938163157621e+00,
290 7.4989420933246e+00, 8.6596432336007e+00,
291 1.0000000000000e+01, 1.1547819846895e+01,
292 1.3335214321633e+01, 1.5399265260595e+01,
293 1.7782794100389e+01, 2.0535250264571e+01,
294 2.3713737056617e+01, 2.7384196342644e+01,
295 3.1622776601684e+01, 3.6517412725484e+01,
296 4.2169650342858e+01, 4.8696752516586e+01,
297 5.6234132519035e+01, 6.4938163157621e+01,
298 7.4989420933246e+01, 8.6596432336007e+01,
299 1.0000000000000e+02, 1.1547819846895e+02,
300 1.3335214321633e+02, 1.5399265260595e+02,
301 1.7782794100389e+02, 2.0535250264571e+02,
302 2.3713737056617e+02, 2.7384196342644e+02,
303 3.1622776601684e+02, 3.6517412725484e+02,
304 4.2169650342858e+02, 4.8696752516586e+02,
305 5.6234132519035e+02, 6.4938163157621e+02,
306 7.4989420933246e+02, 8.6596432336007e+02,
307 1.0000000000000e+03, 1.1547819846895e+03,
308 1.3335214321633e+03, 1.5399265260595e+03,
309 1.7782794100389e+03, 2.0535250264571e+03,
310 2.3713737056617e+03, 2.7384196342644e+03,
311 3.1622776601684e+03, 3.6517412725484e+03,
312 4.2169650342858e+03, 4.8696752516586e+03,
313 5.6234132519035e+03, 6.4938163157621e+03,
314 7.4989420933246e+03, 8.6596432336007e+03,
315 1.0000000000000e+04, 1.1547819846895e+04,
316 1.3335214321633e+04, 1.5399265260595e+04,
317 1.7782794100389e+04, 2.0535250264571e+04,
318 2.3713737056617e+04, 2.7384196342644e+04,
319 3.1622776601684e+04, 3.6517412725484e+04,
320 4.2169650342858e+04, 4.8696752516586e+04,
321 5.6234132519035e+04, 6.4938163157621e+04,
322 7.4989420933246e+04, 8.6596432336007e+04,
323 1.0000000000000e+05, 1.1547819846895e+05,
324 1.3335214321633e+05, 1.5399265260595e+05,
325 1.7782794100389e+05, 2.0535250264571e+05,
326 2.3713737056617e+05, 2.7384196342644e+05,
327 3.1622776601684e+05, 3.6517412725484e+05,
328 4.2169650342858e+05, 4.8696752516586e+05,
329 5.6234132519035e+05, 6.4938163157621e+05,
330 7.4989420933246e+05, 8.6596432336007e+05,
331 };
332
333 /**
334 * decode exponents coded with VLC codes
335 */
337 {
338 int last_exp, n,
code;
339 const uint16_t *ptr;
340 float v, max_scale;
341 uint32_t *q, *q_end, iv;
342 const float *ptab =
pow_tab + 60;
343 const uint32_t *iptab = (const uint32_t *) ptab;
344
345 ptr =
s->exponent_bands[
s->frame_len_bits -
s->block_len_bits];
346 q = (uint32_t *)
s->exponents[ch];
347 q_end = q +
s->block_len;
348 max_scale = 0;
349 if (
s->version == 1) {
351 v = ptab[last_exp];
352 iv = iptab[last_exp];
353 max_scale = v;
354 n = *ptr++;
355 switch (n & 3) do {
356 case 0: *q++ = iv;
357 case 3: *q++ = iv;
358 case 2: *q++ = iv;
359 case 1: *q++ = iv;
360 } while ((n -= 4) > 0);
361 } else
362 last_exp = 36;
363
364 while (q < q_end) {
366 /* NOTE: this offset is the same as MPEG-4 AAC! */
367 last_exp +=
code - 60;
370 last_exp);
371 return -1;
372 }
373 v = ptab[last_exp];
374 iv = iptab[last_exp];
375 if (v > max_scale)
376 max_scale = v;
377 n = *ptr++;
378 switch (n & 3) do {
379 case 0: *q++ = iv;
380 case 3: *q++ = iv;
381 case 2: *q++ = iv;
382 case 1: *q++ = iv;
383 } while ((n -= 4) > 0);
384 }
385 s->max_exponent[ch] = max_scale;
386 return 0;
387 }
388
389 /**
390 * Apply MDCT window and add into output.
391 *
392 * We ensure that when the windows overlap their squared sum
393 * is always 1 (MDCT reconstruction rule).
394 */
396 {
397 float *in =
s->output;
398 int block_len, bsize, n;
399
400 /* left part */
401 if (
s->block_len_bits <=
s->prev_block_len_bits) {
402 block_len =
s->block_len;
403 bsize =
s->frame_len_bits -
s->block_len_bits;
404
405 s->fdsp->vector_fmul_add(
out, in,
s->windows[bsize],
407 } else {
408 block_len = 1 <<
s->prev_block_len_bits;
409 n = (
s->block_len - block_len) / 2;
410 bsize =
s->frame_len_bits -
s->prev_block_len_bits;
411
412 s->fdsp->vector_fmul_add(
out + n, in + n,
s->windows[bsize],
414
415 memcpy(
out + n + block_len, in + n + block_len, n *
sizeof(
float));
416 }
417
420
421 /* right part */
422 if (
s->block_len_bits <=
s->next_block_len_bits) {
423 block_len =
s->block_len;
424 bsize =
s->frame_len_bits -
s->block_len_bits;
425
426 s->fdsp->vector_fmul_reverse(
out, in,
s->windows[bsize], block_len);
427 } else {
428 block_len = 1 <<
s->next_block_len_bits;
429 n = (
s->block_len - block_len) / 2;
430 bsize =
s->frame_len_bits -
s->next_block_len_bits;
431
432 memcpy(
out, in, n *
sizeof(
float));
433
434 s->fdsp->vector_fmul_reverse(
out + n, in + n,
s->windows[bsize],
435 block_len);
436
437 memset(
out + n + block_len, 0, n *
sizeof(
float));
438 }
439 }
440
441 /**
442 * @return 0 if OK. 1 if last block of frame. return -1 if
443 * unrecoverable error.
444 */
446 {
447 int channels =
s->avctx->ch_layout.nb_channels;
448 int n, v,
a, ch, bsize;
449 int coef_nb_bits, total_gain;
451 float mdct_norm;
454
455 #ifdef TRACE
456 ff_tlog(
s->avctx,
"***decode_block: %d:%d\n",
457 s->frame_count - 1,
s->block_num);
458 #endif /* TRACE */
459
460 /* compute current block length */
461 if (
s->use_variable_block_len) {
462 n =
av_log2(
s->nb_block_sizes - 1) + 1;
463
464 if (
s->reset_block_lengths) {
465 s->reset_block_lengths = 0;
467 if (v >=
s->nb_block_sizes) {
469 "prev_block_len_bits %d out of range\n",
470 s->frame_len_bits - v);
471 return -1;
472 }
473 s->prev_block_len_bits =
s->frame_len_bits - v;
475 if (v >=
s->nb_block_sizes) {
477 "block_len_bits %d out of range\n",
478 s->frame_len_bits - v);
479 return -1;
480 }
481 s->block_len_bits =
s->frame_len_bits - v;
482 } else {
483 /* update block lengths */
484 s->prev_block_len_bits =
s->block_len_bits;
485 s->block_len_bits =
s->next_block_len_bits;
486 }
488 if (v >=
s->nb_block_sizes) {
490 "next_block_len_bits %d out of range\n",
491 s->frame_len_bits - v);
492 return -1;
493 }
494 s->next_block_len_bits =
s->frame_len_bits - v;
495 } else {
496 /* fixed block len */
497 s->next_block_len_bits =
s->frame_len_bits;
498 s->prev_block_len_bits =
s->frame_len_bits;
499 s->block_len_bits =
s->frame_len_bits;
500 }
501
502 if (
s->frame_len_bits -
s->block_len_bits >=
s->nb_block_sizes){
504 return -1;
505 }
506
507 /* now check if the block length is coherent with the frame length */
508 s->block_len = 1 <<
s->block_len_bits;
509 if ((
s->block_pos +
s->block_len) >
s->frame_len) {
511 return -1;
512 }
513
516 v = 0;
519 s->channel_coded[ch] =
a;
521 }
522
523 bsize =
s->frame_len_bits -
s->block_len_bits;
524
525 /* if no channel coded, no need to go further */
526 /* XXX: fix potential framing problems */
527 if (!v)
528 goto next;
529
530 /* read total gain and extract corresponding number of bits for
531 * coef escape coding */
532 total_gain = 1;
533 for (;;) {
537 }
541 break;
542 }
543
545
546 /* compute number of coefficients */
547 n =
s->coefs_end[bsize] -
s->coefs_start;
550
551 /* complex coding */
552 if (
s->use_noise_coding) {
554 if (
s->channel_coded[ch]) {
556 n =
s->exponent_high_sizes[bsize];
557 for (
i = 0;
i < n;
i++) {
559 s->high_band_coded[ch][
i] =
a;
560 /* if noise coding, the coefficients are not transmitted */
562 nb_coefs[ch] -=
s->exponent_high_bands[bsize][
i];
563 }
564 }
565 }
567 if (
s->channel_coded[ch]) {
569
570 n =
s->exponent_high_sizes[bsize];
572 for (
i = 0;
i < n;
i++) {
573 if (
s->high_band_coded[ch][
i]) {
574 if (
val == (
int) 0x80000000) {
576 } else {
579 }
580 s->high_band_values[ch][
i] =
val;
581 }
582 }
583 }
584 }
585 }
586
587 /* exponents can be reused in short blocks. */
588 if ((
s->block_len_bits ==
s->frame_len_bits) ||
get_bits1(&
s->gb)) {
590 if (
s->channel_coded[ch]) {
591 if (
s->use_exp_vlc) {
593 return -1;
594 } else {
596 }
597 s->exponents_bsize[ch] = bsize;
598 s->exponents_initialized[ch] = 1;
599 }
600 }
601 }
602
604 if (
s->channel_coded[ch] && !
s->exponents_initialized[ch])
606 }
607
608 /* parse spectral coefficients : just RLE encoding */
610 if (
s->channel_coded[ch]) {
611 int tindex;
614
615 /* special VLC tables are used for ms stereo because
616 * there is potentially less energy there */
617 tindex = (ch == 1 &&
s->ms_stereo);
618 memset(ptr, 0,
s->block_len *
sizeof(
WMACoef));
620 s->level_table[tindex],
s->run_table[tindex],
622 s->block_len,
s->frame_len_bits, coef_nb_bits);
625 }
628 }
629
630 /* normalize */
631 {
632 int n4 =
s->block_len / 2;
633 mdct_norm = 1.0 / (
float) n4;
635 mdct_norm *= sqrt(n4);
636 }
637
638 /* finally compute the MDCT coefficients */
640 if (
s->channel_coded[ch]) {
642 float *coefs, *exponents,
mult, mult1,
noise;
643 int i, j, n, n1, last_high_band, esize;
645
646 coefs1 =
s->coefs1[ch];
647 exponents =
s->exponents[ch];
648 esize =
s->exponents_bsize[ch];
651 coefs =
s->coefs[ch];
652 if (
s->use_noise_coding) {
654 /* very low freqs : noise */
655 for (
i = 0;
i <
s->coefs_start;
i++) {
656 *coefs++ =
s->noise_table[
s->noise_index] *
657 exponents[i << bsize >> esize] * mult1;
658 s->noise_index = (
s->noise_index + 1) &
660 }
661
662 n1 =
s->exponent_high_sizes[bsize];
663
664 /* compute power of high bands */
665 exponents =
s->exponents[ch] +
666 (
s->high_band_start[bsize] << bsize >> esize);
667 last_high_band = 0; /* avoid warning */
668 for (j = 0; j < n1; j++) {
669 n =
s->exponent_high_bands[
s->frame_len_bits -
670 s->block_len_bits][j];
671 if (
s->high_band_coded[ch][j]) {
672 float e2, v;
673 e2 = 0;
674 for (
i = 0;
i < n;
i++) {
675 v = exponents[i << bsize >> esize];
676 e2 += v * v;
677 }
678 exp_power[j] = e2 / n;
679 last_high_band = j;
680 ff_tlog(
s->avctx,
"%d: power=%f (%d)\n", j, exp_power[j], n);
681 }
682 exponents += n << bsize >> esize;
683 }
684
685 /* main freqs and high freqs */
686 exponents =
s->exponents[ch] + (
s->coefs_start << bsize >> esize);
687 for (j = -1; j < n1; j++) {
688 if (j < 0)
689 n =
s->high_band_start[bsize] -
s->coefs_start;
690 else
691 n =
s->exponent_high_bands[
s->frame_len_bits -
692 s->block_len_bits][j];
693 if (j >= 0 &&
s->high_band_coded[ch][j]) {
694 /* use noise with specified power */
695 mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
696 /* XXX: use a table */
697 mult1 = mult1 *
ff_exp10(
s->high_band_values[ch][j] * 0.05);
698 mult1 = mult1 / (
s->max_exponent[ch] *
s->noise_mult);
699 mult1 *= mdct_norm;
700 for (
i = 0;
i < n;
i++) {
701 noise =
s->noise_table[
s->noise_index];
703 *coefs++ =
noise * exponents[i << bsize >> esize] * mult1;
704 }
705 exponents += n << bsize >> esize;
706 } else {
707 /* coded values + small noise */
708 for (
i = 0;
i < n;
i++) {
709 noise =
s->noise_table[
s->noise_index];
711 *coefs++ = ((*coefs1++) +
noise) *
712 exponents[i << bsize >> esize] *
mult;
713 }
714 exponents += n << bsize >> esize;
715 }
716 }
717
718 /* very high freqs : noise */
719 n =
s->block_len -
s->coefs_end[bsize];
720 mult1 =
mult * exponents[(-(1 << bsize)) >> esize];
721 for (
i = 0;
i < n;
i++) {
722 *coefs++ =
s->noise_table[
s->noise_index] * mult1;
724 }
725 } else {
726 /* XXX: optimize more */
727 for (
i = 0;
i <
s->coefs_start;
i++)
728 *coefs++ = 0.0;
730 for (
i = 0;
i < n;
i++)
731 *coefs++ = coefs1[
i] * exponents[
i << bsize >> esize] *
mult;
732 n =
s->block_len -
s->coefs_end[bsize];
733 for (
i = 0;
i < n;
i++)
734 *coefs++ = 0.0;
735 }
736 }
737 }
738
739 #ifdef TRACE
741 if (
s->channel_coded[ch]) {
742 dump_floats(
s,
"exponents", 3,
s->exponents[ch],
s->block_len);
743 dump_floats(
s,
"coefs", 1,
s->coefs[ch],
s->block_len);
744 }
745 }
746 #endif /* TRACE */
747
748 if (
s->ms_stereo &&
s->channel_coded[1]) {
749 /* nominal case for ms stereo: we do it before mdct */
750 /* no need to optimize this case because it should almost
751 * never happen */
752 if (!
s->channel_coded[0]) {
753 ff_tlog(
s->avctx,
"rare ms-stereo case happened\n");
754 memset(
s->coefs[0], 0,
sizeof(
float) *
s->block_len);
755 s->channel_coded[0] = 1;
756 }
757
758 s->fdsp->butterflies_float(
s->coefs[0],
s->coefs[1],
s->block_len);
759 }
760
761 next:
762 mdct =
s->mdct_ctx[bsize];
763 mdct_fn =
s->mdct_fn[bsize];
764
767
768 n4 =
s->block_len / 2;
769 if (
s->channel_coded[ch])
770 mdct_fn(mdct,
s->output,
s->coefs[ch],
sizeof(
float));
771 else if (!(
s->ms_stereo && ch == 1))
772 memset(
s->output, 0,
sizeof(
s->output));
773
774 /* multiply by the window and add in the frame */
775 index = (
s->frame_len / 2) +
s->block_pos - n4;
777 }
778
779 /* update block number */
781 s->block_pos +=
s->block_len;
782 if (
s->block_pos >=
s->frame_len)
783 return 1;
784 else
785 return 0;
786 }
787
788 /* decode a frame of frame_len samples */
790 int samples_offset)
791 {
793
794 #ifdef TRACE
795 ff_tlog(
s->avctx,
"***decode_frame: %d size=%d\n",
796 s->frame_count++,
s->frame_len);
797 #endif /* TRACE */
798
799 /* read each block */
802 for (;;) {
805 return -1;
807 break;
808 }
809
810 for (ch = 0; ch <
s->avctx->ch_layout.nb_channels; ch++) {
811 /* copy current block to output */
812 memcpy(
samples[ch] + samples_offset,
s->frame_out[ch],
813 s->frame_len *
sizeof(*
s->frame_out[ch]));
814 /* prepare for next block */
815 memmove(&
s->frame_out[ch][0], &
s->frame_out[ch][
s->frame_len],
816 s->frame_len *
sizeof(*
s->frame_out[ch]));
817
818 #ifdef TRACE
819 dump_floats(
s,
"samples", 6,
samples[ch] + samples_offset,
821 #endif /* TRACE */
822 }
823
824 return 0;
825 }
826
828 int *got_frame_ptr,
AVPacket *avpkt)
829 {
830 const uint8_t *buf = avpkt->
data;
831 int buf_size = avpkt->
size;
834 uint8_t *q;
836 int samples_offset;
837
838 ff_tlog(avctx,
"***decode_superframe:\n");
839
840 if (buf_size == 0) {
842 return 0;
843
847
849 for (
i = 0;
i <
s->avctx->ch_layout.nb_channels;
i++)
852
853 s->last_superframe_len = 0;
855 *got_frame_ptr = 1;
856 return 0;
857 }
858 if (buf_size < avctx->block_align) {
860 "Input packet size too small (%d < %d)\n",
863 }
866
868
869 if (
s->use_bit_reservoir) {
870 /* read super frame header */
872 nb_frames =
get_bits(&
s->gb, 4) - (
s->last_superframe_len <= 0);
873 if (nb_frames <= 0) {
876 "nb_frames is %d bits left %d\n",
878 if (is_error)
880
881 if ((
s->last_superframe_len + buf_size - 1) >
884
885 q =
s->last_superframe +
s->last_superframe_len;
890 }
892
893 s->last_superframe_len += 8*buf_size - 8;
894 // s->reset_block_lengths = 1; //XXX is this needed ?
895 *got_frame_ptr = 0;
896 return buf_size;
897 }
898 } else
899 nb_frames = 1;
900
901 /* get output buffer */
906 samples_offset = 0;
907
908 if (
s->use_bit_reservoir) {
909 bit_offset =
get_bits(&
s->gb,
s->byte_offset_bits + 3);
912 "Invalid last frame bit offset %d > buf size %d (%d)\n",
915 }
916
917 if (
s->last_superframe_len > 0) {
918 /* add bit_offset bits to last frame */
919 if ((
s->last_superframe_len + ((bit_offset + 7) >> 3)) >
922 q =
s->last_superframe +
s->last_superframe_len;
927 }
931
932 /* XXX: bit_offset bits into last frame */
934 s->last_superframe_len * 8 + bit_offset);
935 /* skip unused bits */
936 if (
s->last_bitoffset > 0)
938 /* this frame is stored in the last superframe and in the
939 * current one */
942 samples_offset +=
s->frame_len;
943 nb_frames--;
944 }
945
946 /* read each frame starting from bit_offset */
947 pos = bit_offset + 4 + 4 +
s->byte_offset_bits + 3;
954
955 s->reset_block_lengths = 1;
956 for (
i = 0;
i < nb_frames;
i++) {
959 samples_offset +=
s->frame_len;
960 }
961
962 /* we copy the end of the frame in the last frame buffer */
964 ((bit_offset + 4 + 4 +
s->byte_offset_bits + 3) & ~7);
965 s->last_bitoffset =
pos & 7;
971 }
972 s->last_superframe_len =
len;
973 memcpy(
s->last_superframe, buf +
pos,
len);
974 } else {
975 /* single frame decode */
978 samples_offset +=
s->frame_len;
979 }
980
981 ff_dlog(
s->avctx,
"%d %d %d %d eaten:%d\n",
982 s->frame_len_bits,
s->block_len_bits,
s->frame_len,
s->block_len,
984
985 *got_frame_ptr = 1;
986
987 return buf_size;
988
990 /* when error, we reset the bit reservoir */
991 s->last_superframe_len = 0;
992 return -1;
993 }
994
996 {
998
1000 s->last_superframe_len = 0;
1001
1004 }
1005
1006 #if CONFIG_WMAV1_DECODER
1021 };
1022 #endif
1023 #if CONFIG_WMAV2_DECODER
1038 };
1039 #endif