1 /*
2 * AAC encoder psychoacoustic model
3 * Copyright (C) 2008 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * AAC encoder psychoacoustic model
25 */
26
29
33
34 /***********************************
35 * TODOs:
36 * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
37 * control quality for quality-based output
38 **********************************/
39
40 /**
41 * constants for 3GPP AAC psychoacoustic model
42 * @{
43 */
44 #define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark)
45 #define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark)
46 /* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */
47 #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
48 /* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */
49 #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
50 /* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */
51 #define PSY_3GPP_EN_SPREAD_HI_S 1.5f
52 /* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */
53 #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
54 /* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */
55 #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
56
57 #define PSY_3GPP_RPEMIN 0.01f
58 #define PSY_3GPP_RPELEV 2.0f
59
60 #define PSY_3GPP_C1 3.0f /* log2(8) */
61 #define PSY_3GPP_C2 1.3219281f /* log2(2.5) */
62 #define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */
63
64 #define PSY_SNR_1DB 7.9432821e-1f /* -1dB */
65 #define PSY_SNR_25DB 3.1622776e-3f /* -25dB */
66
67 #define PSY_3GPP_SAVE_SLOPE_L -0.46666667f
68 #define PSY_3GPP_SAVE_SLOPE_S -0.36363637f
69 #define PSY_3GPP_SAVE_ADD_L -0.84285712f
70 #define PSY_3GPP_SAVE_ADD_S -0.75f
71 #define PSY_3GPP_SPEND_SLOPE_L 0.66666669f
72 #define PSY_3GPP_SPEND_SLOPE_S 0.81818181f
73 #define PSY_3GPP_SPEND_ADD_L -0.35f
74 #define PSY_3GPP_SPEND_ADD_S -0.26111111f
75 #define PSY_3GPP_CLIP_LO_L 0.2f
76 #define PSY_3GPP_CLIP_LO_S 0.2f
77 #define PSY_3GPP_CLIP_HI_L 0.95f
78 #define PSY_3GPP_CLIP_HI_S 0.75f
79
80 #define PSY_3GPP_AH_THR_LONG 0.5f
81 #define PSY_3GPP_AH_THR_SHORT 0.63f
82
83 #define PSY_PE_FORGET_SLOPE 511
84
85 enum {
89 };
90
91 #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
92 #define PSY_3GPP_PE_TO_BITS(bits) ((bits) / 1.18f)
93
94 /* LAME psy model constants */
95 #define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order
96 #define AAC_BLOCK_SIZE_LONG 1024
///< long block size
97 #define AAC_BLOCK_SIZE_SHORT 128
///< short block size
98 #define AAC_NUM_BLOCKS_SHORT 8
///< number of blocks in a short sequence
99 #define PSY_LAME_NUM_SUBBLOCKS 3
///< Number of sub-blocks in each short block
100
101 /**
102 * @}
103 */
104
105 /**
106 * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
107 */
110 float thr;
///< energy threshold
112 float nz_lines;
///< number of non-zero spectral lines
114 float pe;
///< perceptual entropy
115 float pe_const;
///< constant part of the PE calculation
116 float norm_fac;
///< normalization factor for linearization
119
120 /**
121 * single/pair channel context for psychoacoustic model
122 */
126
129 uint8_t
next_grouping;
///< stored grouping scheme for the next frame (in case of 8 short window sequence)
131 /* LAME psy model specific members */
134 int prev_attack;
///< attack value for the last short block in the previous sequence
136
137 /**
138 * psychoacoustic model frame type-dependent coefficients
139 */
141 float ath;
///< absolute threshold of hearing per bands
142 float barks;
///< Bark value for each spectral band in long frame
143 float spread_low[2];
///< spreading factor for low-to-high threshold spreading in long frame
144 float spread_hi [2];
///< spreading factor for high-to-low threshold spreading in long frame
147
148 /**
149 * 3GPP TS26.403-inspired psychoacoustic model specific data
150 */
155 struct {
156 float min;
///< minimum allowed PE for bit factor calculation
157 float max;
///< maximum allowed PE for bit factor calculation
158 float previous;
///< allowed PE of the previous frame
165
166 /**
167 * LAME psy model preset struct
168 */
170 int quality;
///< Quality to map the rest of the vaules to.
171 /* This is overloaded to be both kbps per channel in ABR mode, and
172 * requested quality in constant quality mode.
173 */
174 float st_lrm;
///< short threshold for L, R, and M channels
176
177 /**
178 * LAME psy model preset table for ABR
179 */
181 /* TODO: Tuning. These were taken from LAME. */
182 /* kbps/ch st_lrm */
183 { 8, 6.60},
184 { 16, 6.60},
185 { 24, 6.60},
186 { 32, 6.60},
187 { 40, 6.60},
188 { 48, 6.60},
189 { 56, 6.60},
190 { 64, 6.40},
191 { 80, 6.00},
192 { 96, 5.60},
193 {112, 5.20},
194 {128, 5.20},
195 {160, 5.20}
196 };
197
198 /**
199 * LAME psy model preset table for constant quality
200 */
202 /* vbr_q st_lrm */
203 { 0, 4.20},
204 { 1, 4.20},
205 { 2, 4.20},
206 { 3, 4.20},
207 { 4, 4.20},
208 { 5, 4.20},
209 { 6, 4.20},
210 { 7, 4.20},
211 { 8, 4.20},
212 { 9, 4.20},
213 {10, 4.20}
214 };
215
216 /**
217 * LAME psy model FIR coefficient table
218 */
220 -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
221 -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2,
222 -5.52212e-17 * 2, -0.313819 * 2
223 };
224
225 #if ARCH_MIPS
227 #endif /* ARCH_MIPS */
228
229 /**
230 * Calculate the ABR attack threshold from the above LAME psymodel table.
231 */
233 {
234 /* Assume max bitrate to start with */
235 int lower_range = 12, upper_range = 12;
239
240 /* Determine which bitrates the value specified falls between.
241 * If the loop ends without breaking our above assumption of 320kbps was correct.
242 */
243 for (
i = 1;
i < 13;
i++) {
249 break; /* Upper range found */
250 }
251 }
252
253 /* Determine which range the value specified is closer to */
257 }
258
259 /**
260 * LAME psy model specific initialization
261 */
263 {
265
268
271 else
273
276 }
277 }
278
279 /**
280 * Calculate Bark value for given line.
281 */
283 {
284 return 13.3f *
atanf(0.00076
f *
f) + 3.5f *
atanf((
f / 7500.0
f) * (
f / 7500.0
f));
285 }
286
288 /**
289 * Calculate ATH value for given frequency.
290 * Borrowed from Lame.
291 */
293 {
295 return 3.64 * pow(
f, -0.8)
296 - 6.8 *
exp(-0.6 * (
f - 3.4) * (
f - 3.4))
297 + 6.0 *
exp(-0.15 * (
f - 8.7) * (
f - 8.7))
298 + (0.6 + 0.04 * add) * 0.001 *
f *
f *
f *
f;
299 }
300
303 float bark;
305 float prev, minscale, minath, minsnr, pe_min;
307
309 const float num_bark =
calc_bark((
float)bandwidth);
310
311 if (bandwidth <= 0)
313
315 if (!
ctx->model_priv_data)
317 pctx =
ctx->model_priv_data;
319
321 /* Use the target average bitrate to compute spread parameters */
322 chan_bitrate = (
int)(chan_bitrate / 120.0 * (
ctx->avctx->global_quality ?
ctx->avctx->global_quality : 120));
323 }
324
330 ctx->bitres.size -=
ctx->bitres.size % 8;
333 for (j = 0; j < 2; j++) {
335 const uint8_t *band_sizes =
ctx->bands[j];
336 float line_to_frequency =
ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
337 float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) /
ctx->avctx->sample_rate;
338 /* reference encoder uses 2.4% here instead of 60% like the spec says */
341 /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
343
345 prev = 0.0;
346 for (
g = 0;
g <
ctx->num_bands[j];
g++) {
349 coeffs[
g].
barks = (bark + prev) / 2.0;
350 prev = bark;
351 }
352 for (
g = 0;
g <
ctx->num_bands[j] - 1;
g++) {
354 float bark_width = coeffs[
g+1].
barks - coeffs->
barks;
357 coeff->spread_low[1] =
ff_exp10(-bark_width * en_spread_low);
359 pe_min = bark_pe * bark_width;
360 minsnr =
exp2(pe_min / band_sizes[
g]) - 1.5f;
362 }
363 start = 0;
364 for (
g = 0;
g <
ctx->num_bands[j];
g++) {
365 minscale =
ath(start * line_to_frequency,
ATH_ADD);
366 for (
i = 1;
i < band_sizes[
g];
i++)
368 coeffs[
g].
ath = minscale - minath;
369 start += band_sizes[
g];
370 }
371 }
372
377 }
378
380
381 return 0;
382 }
383
384 /**
385 * IIR filter used in block switching decision
386 */
388 {
390
395 }
396
397 /**
398 * window grouping information stored as bits (0 - new group, 1 - group continues)
399 */
401 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
402 };
403
404 /**
405 * Tell encoder which window types to use.
406 * @see 3GPP TS26.403 5.4.1 "Blockswitching"
407 */
409 const int16_t *audio,
410 const int16_t *la,
412 {
415 int attack_ratio = br <= 16000 ? 18 : 10;
418 uint8_t grouping = 0;
421
422 if (la) {
424 int switch_to_eight = 0;
425 float sum = 0.0, sum2 = 0.0;
426 int attack_n = 0;
427 int stay_short = 0;
428 for (
i = 0;
i < 8;
i++) {
429 for (j = 0; j < 128; j++) {
431 sum += v*v;
432 }
434 sum2 += sum;
435 }
436 for (
i = 0;
i < 8;
i++) {
437 if (
s[
i] > pch->win_energy * attack_ratio) {
439 switch_to_eight = 1;
440 break;
441 }
442 }
443 pch->win_energy = pch->win_energy*7/8 + sum2/64;
444
445 wi.window_type[1] = prev_type;
446 switch (prev_type) {
450 break;
453 grouping = pch->next_grouping;
455 break;
459 break;
465 break;
466 }
467
469 pch->next_window_seq = next_type;
470 } else {
471 for (
i = 0;
i < 3;
i++)
472 wi.window_type[
i] = prev_type;
474 }
475
476 wi.window_shape = 1;
478 wi.num_windows = 1;
479 wi.grouping[0] = 1;
480 } else {
481 int lastgrp = 0;
482 wi.num_windows = 8;
483 for (
i = 0;
i < 8;
i++) {
484 if (!((grouping >>
i) & 1))
486 wi.grouping[lastgrp]++;
487 }
488 }
489
490 return wi;
491 }
492
493 /* 5.6.1.2 "Calculation of Bit Demand" */
495 int short_window)
496 {
503 float clipped_pe, bit_save, bit_spend, bit_factor, fill_level, forgetful_min_pe;
504
507 fill_level =
av_clipf((
float)
ctx->fill_level /
size, clip_low, clip_high);
509 bit_save = (fill_level + bitsave_add) * bitsave_slope;
510 assert(bit_save <= 0.3f && bit_save >= -0.05000001
f);
511 bit_spend = (fill_level + bitspend_add) * bitspend_slope;
512 assert(bit_spend <= 0.5f && bit_spend >= -0.1
f);
513 /* The bit factor graph in the spec is obviously incorrect.
514 * bit_spend + ((bit_spend - bit_spend))...
515 * The reference encoder subtracts everything from 1, but also seems incorrect.
516 * 1 - bit_save + ((bit_spend + bit_save))...
517 * Hopefully below is correct.
518 */
519 bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (
ctx->pe.max -
ctx->pe.min)) * (clipped_pe -
ctx->pe.min);
520 /* NOTE: The reference encoder attempts to center pe max/min around the current pe.
521 * Here we do that by slowly forgetting pe.min when pe stays in a range that makes
522 * it unlikely (ie: above the mean)
523 */
527 ctx->pe.min =
FFMIN(pe, forgetful_min_pe);
528
529 /* NOTE: allocate a minimum of 1/8th average frame bits, to avoid
530 * reservoir starvation from producing zero-bit frames
531 */
533 ctx->frame_bits * bit_factor,
535 }
536
538 {
540
552 }
555 }
556
558 }
559
561 float active_lines)
562 {
563 float thr_avg, reduction;
564
565 if(active_lines == 0.0)
566 return 0;
567
568 thr_avg =
exp2f((
a - pe) / (4.0
f * active_lines));
569 reduction =
exp2f((
a - desired_pe) / (4.0
f * active_lines)) - thr_avg;
570
571 return FFMAX(reduction, 0.0
f);
572 }
573
575 float reduction)
576 {
577 float thr = band->
thr;
578
581 thr =
sqrtf(thr) + reduction;
582 thr *= thr;
583 thr *= thr;
584
585 /* This deviates from the 3GPP spec to match the reference encoder.
586 * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands
587 * that have hole avoidance on (active or inactive). It always reduces the
588 * threshold of bands with hole avoidance off.
589 */
593 }
594 }
595
596 return thr;
597 }
598
599 #ifndef calc_thr_3gpp
601 const uint8_t *band_sizes, const float *coefs, const int cutoff)
602 {
604 int start = 0, wstart = 0;
606 wstart = 0;
607 for (
g = 0;
g < num_bands;
g++) {
609
610 float form_factor = 0.0f;
611 float Temp;
613 if (wstart < cutoff) {
614 for (
i = 0;
i < band_sizes[
g];
i++) {
615 band->
energy += coefs[start+
i] * coefs[start+
i];
617 }
618 }
622
623 start += band_sizes[
g];
624 wstart += band_sizes[
g];
625 }
626 }
627 }
628 #endif /* calc_thr_3gpp */
629
630 #ifndef psy_hp_filter
632 {
635 float sum1, sum2;
637 sum2 = 0.0;
641 }
642 /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768.
643 * Tuning this for normalized floats would be difficult. */
644 hpfsmpl[
i] = (sum1 + sum2) * 32768.0
f;
645 }
646 }
647 #endif /* psy_hp_filter */
648
649 /**
650 * Calculate band thresholds as suggested in 3GPP TS26.403
651 */
654 {
658 float desired_bits, desired_pe, delta_pe, reduction=
NAN, spread_en[128] = {0};
659 float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
660 float pe = pctx->chan_bitrate > 32000 ? 0.0f :
FFMAX(50.0
f, 100.0
f - pctx->chan_bitrate * 100.0f / 32000.0f);
661 const int num_bands =
ctx->num_bands[wi->num_windows == 8];
662 const uint8_t *band_sizes =
ctx->bands[wi->num_windows == 8];
663 AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8];
666 const int cutoff = bandwidth * 2048 / wi->num_windows /
ctx->avctx->sample_rate;
667
668 //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
669 calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff);
670
671 //modify thresholds and energies - spread, threshold in quiet, pre-echo control
672 for (
w = 0;
w < wi->num_windows*16;
w += 16) {
674
675 /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */
676 spread_en[0] =
bands[0].energy;
677 for (
g = 1;
g < num_bands;
g++) {
679 spread_en[
w+
g] =
FFMAX(
bands[
g].energy, spread_en[
w+
g-1] * coeffs[
g].spread_hi[1]);
680 }
681 for (
g = num_bands - 2;
g >= 0;
g--) {
683 spread_en[
w+
g] =
FFMAX(spread_en[
w+
g], spread_en[
w+
g+1] * coeffs[
g].spread_low[1]);
684 }
685 //5.4.2.4 "Threshold in quiet"
686 for (
g = 0;
g < num_bands;
g++) {
688
690 //5.4.2.5 "Pre-echo control"
694
695 /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */
699
700 /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */
701 if (spread_en[
w+
g] * avoid_hole_thr > band->
energy || coeffs[
g].min_snr > 1.0f)
703 else
705 }
706 }
707
708 /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */
711 /* (2.5 * 120) achieves almost transparent rate, and we want to give
712 * ample room downwards, so we make that equivalent to QSCALE=2.4
713 */
714 desired_pe = pe * (
ctx->avctx->global_quality ?
ctx->avctx->global_quality : 120) / (2 * 2.5
f * 120.0
f);
717
718 /* PE slope smoothing */
719 if (
ctx->bitres.bits > 0) {
722 }
723
724 pctx->pe.max =
FFMAX(pe, pctx->pe.max);
725 pctx->pe.min =
FFMIN(pe, pctx->pe.min);
726 } else {
729
730 /* NOTE: PE correction is kept simple. During initial testing it had very
731 * little effect on the final bitrate. Probably a good idea to come
732 * back and do more testing later.
733 */
734 if (
ctx->bitres.bits > 0)
736 0.85f, 1.15f);
737 }
739 ctx->bitres.alloc = desired_bits;
740
741 if (desired_pe < pe) {
742 /* 5.6.1.3.4 "First Estimation of the reduction value" */
743 for (
w = 0;
w < wi->num_windows*16;
w += 16) {
745 pe = 0.0f;
747 active_lines = 0.0f;
748 for (
g = 0;
g < num_bands;
g++) {
750
752 /* recalculate PE */
756 }
757 }
758
759 /* 5.6.1.3.5 "Second Estimation of the reduction value" */
760 for (
i = 0;
i < 2;
i++) {
761 float pe_no_ah = 0.0f, desired_pe_no_ah;
762 active_lines =
a = 0.0f;
763 for (
w = 0;
w < wi->num_windows*16;
w += 16) {
764 for (
g = 0;
g < num_bands;
g++) {
766
768 pe_no_ah += band->
pe;
771 }
772 }
773 }
774 desired_pe_no_ah =
FFMAX(desired_pe - (pe - pe_no_ah), 0.0
f);
775 if (active_lines > 0.0
f)
777
778 pe = 0.0f;
779 for (
w = 0;
w < wi->num_windows*16;
w += 16) {
780 for (
g = 0;
g < num_bands;
g++) {
782
783 if (active_lines > 0.0
f)
786 if (band->
thr > 0.0f)
788 else
791 }
792 }
793 delta_pe = desired_pe - pe;
794 if (
fabs(delta_pe) > 0.05
f * desired_pe)
795 break;
796 }
797
798 if (pe < 1.15
f * desired_pe) {
799 /* 6.6.1.3.6 "Final threshold modification by linearization" */
800 norm_fac = norm_fac ? 1.0f / norm_fac : 0;
801 for (
w = 0;
w < wi->num_windows*16;
w += 16) {
802 for (
g = 0;
g < num_bands;
g++) {
804
806 float delta_sfb_pe = band->
norm_fac * norm_fac * delta_pe;
807 float thr = band->
thr;
808
813 }
814 }
815 }
816 } else {
817 /* 5.6.1.3.7 "Further perceptual entropy reduction" */
819 while (pe > desired_pe &&
g--) {
820 for (
w = 0;
w < wi->num_windows*16;
w+= 16) {
826 }
827 }
828 }
829 /* TODO: allow more holes (unused without mid/side) */
830 }
831 }
832
833 for (
w = 0;
w < wi->num_windows*16;
w += 16) {
834 for (
g = 0;
g < num_bands;
g++) {
837
842 }
843 }
844
845 memcpy(pch->prev_band, pch->band, sizeof(pch->band));
846 }
847
850 {
851 int ch;
853
854 for (ch = 0; ch < group->
num_ch; ch++)
856 }
857
859 {
864 }
865
867 {
869 if (uselongblock) {
872 } else {
878 }
879
881 ctx->next_window_seq = blocktype;
882 }
883
885 const float *la,
int channel,
int prev_type)
886 {
889 int grouping = 0;
890 int uselongblock = 1;
894
895 if (la) {
897 const float *pf = hpfsmpl;
902 int att_sum = 0;
903
904 /* LAME comment: apply high pass filter of fs/4 */
906
907 /* Calculate the energies of each sub-shortblock */
912 energy_short[0] += energy_subshort[
i];
913 }
914
917 float p = 1.0f;
918 for (; pf < pfe; pf++)
922 /* NOTE: The indexes below are [i + 3 - 2] in the LAME source.
923 * Obviously the 3 and 2 have some significance, or this would be just [i + 1]
924 * (which is what we use here). What the 3 stands for is ambiguous, as it is both
925 * number of short blocks, and the number of sub-short blocks.
926 * It seems that LAME is comparing each sub-block to sub-block + 1 in the
927 * previous block.
928 */
929 if (p > energy_subshort[
i + 1])
930 p = p / energy_subshort[
i + 1];
931 else if (energy_subshort[
i + 1] > p * 10.0
f)
932 p = energy_subshort[
i + 1] / (p * 10.0f);
933 else
934 p = 0.0;
936 }
937
938 /* compare energy between sub-short blocks */
941 if (attack_intensity[
i] > pch->attack_threshold)
943
944 /* should have energy change between short blocks, in order to avoid periodic signals */
945 /* Good samples to show the effect are Trumpet test songs */
946 /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */
947 /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */
949 const float u = energy_short[
i - 1];
950 const float v = energy_short[
i];
951 const float m =
FFMAX(
u, v);
952 if (m < 40000) { /* (2) */
953 if (
u < 1.7
f * v && v < 1.7
f *
u) {
/* (1) */
954 if (
i == 1 && attacks[0] < attacks[
i])
955 attacks[0] = 0;
957 }
958 }
959 att_sum += attacks[
i];
960 }
961
962 if (attacks[0] <= pch->prev_attack)
963 attacks[0] = 0;
964
965 att_sum += attacks[0];
966 /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */
967 if (pch->prev_attack == 3 || att_sum) {
968 uselongblock = 0;
969
971 if (attacks[
i] && attacks[
i-1])
973 }
974 } else {
975 /* We have no lookahead info, so just use same type as the previous sequence. */
977 }
978
980
983
988 else
990
991 } else {
992 int lastgrp = 0;
993
996 for (
i = 0;
i < 8;
i++) {
997 if (!((pch->next_grouping >>
i) & 1))
1000 }
1001 }
1002
1003 /* Determine grouping, based on the location of the first attack, and save for
1004 * the next frame.
1005 * FIXME: Move this to analysis.
1006 * TODO: Tune groupings depending on attack location
1007 * TODO: Handle more than one attack in a group
1008 */
1009 for (
i = 0;
i < 9;
i++) {
1012 break;
1013 }
1014 }
1016
1017 pch->prev_attack = attacks[8];
1018
1019 return wi;
1020 }
1021
1023 {
1024 .
name =
"3GPP TS 26.403-inspired model",
1029 };