FFmpeg: libavfilter/vf_rotate.c Source File
Go to the documentation of this file. 1 /*
2 * Copyright (c) 2013 Stefano Sabatini
3 * Copyright (c) 2008 Vitor Sessak
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * rotation filter, partially based on the tests/rotozoom.c program
25 */
26
33
38
40
42 "in_w" , "iw", ///< width of the input video
43 "in_h" , "ih", ///< height of the input video
44 "out_w", "ow", ///< width of the input video
45 "out_h", "oh", ///< height of the input video
46 "hsub", "vsub",
47 "n", ///< number of frame
48 "t", ///< timestamp expressed in seconds
50 };
51
61 };
62
70 uint8_t
fillcolor[4];
///< color expressed either in YUVA or RGBA colorspace for the padding area
80 uint8_t *(*interpolate_bilinear)(uint8_t *dst_color,
81 const uint8_t *
src,
int src_linesize,
int src_linestep,
82 int x, int y, int max_x, int max_y);
84
94
95 #define OFFSET(x) offsetof(RotContext, x)
96 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
97 #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
98
110 };
111
113
115 {
117
122 else
124 return 0;
125 }
126
128 {
130
133 }
134
156 };
157
159 {
163 float sinx = sin(angle);
164 float cosx = cos(angle);
165
166 return FFMAX(0, inh * sinx) +
FFMAX(0, -inw * cosx) +
168 }
169
171 {
175 float sinx = sin(angle);
176 float cosx = cos(angle);
177
178 return FFMAX(0, -inh * cosx) +
FFMAX(0, -inw * sinx) +
180 }
181
186 };
187
189 "rotw",
190 "roth",
192 };
193
195 #define FIXP2 (1<<20)
196 #define INT_PI 3294199 //(M_PI * FIXP2)
197
198 /**
199 * Compute the sin of a using integer values.
200 * Input is scaled by FIXP2 and output values are scaled by FIXP.
201 */
203 {
208
211
212 /* compute sin using Taylor series approximated to the fifth term */
214 for (
i = 2;
i < 11;
i += 2) {
217 }
218 return (res + 8)>>4;
219 }
220
221 /**
222 * Interpolate the color in src at position x and y using bilinear
223 * interpolation.
224 */
226 const uint8_t *
src,
int src_linesize,
int src_linestep,
227 int x, int y, int max_x, int max_y)
228 {
229 int int_x =
av_clip(x>>16, 0, max_x);
230 int int_y =
av_clip(y>>16, 0, max_y);
231 int frac_x = x&0xFFFF;
232 int frac_y = y&0xFFFF;
234 int int_x1 =
FFMIN(int_x+1, max_x);
235 int int_y1 =
FFMIN(int_y+1, max_y);
236
237 for (
i = 0;
i < src_linestep;
i++) {
238 int s00 =
src[src_linestep * int_x +
i + src_linesize * int_y ];
239 int s01 =
src[src_linestep * int_x1 +
i + src_linesize * int_y ];
240 int s10 =
src[src_linestep * int_x +
i + src_linesize * int_y1];
241 int s11 =
src[src_linestep * int_x1 +
i + src_linesize * int_y1];
242 int s0 = (((1<<16) - frac_x)*s00 + frac_x*s01);
243 int s1 = (((1<<16) - frac_x)*s10 + frac_x*s11);
244
245 dst_color[
i] = ((int64_t)((1<<16) - frac_y)*
s0 + (int64_t)frac_y*
s1) >> 32;
246 }
247
248 return dst_color;
249 }
250
251 /**
252 * Interpolate the color in src at position x and y using bilinear
253 * interpolation.
254 */
256 const uint8_t *
src,
int src_linesize,
int src_linestep,
257 int x, int y, int max_x, int max_y)
258 {
259 int int_x =
av_clip(x>>16, 0, max_x);
260 int int_y =
av_clip(y>>16, 0, max_y);
261 int64_t frac_x = x&0xFFFF;
262 int64_t frac_y = y&0xFFFF;
264 int int_x1 =
FFMIN(int_x+1, max_x);
265 int int_y1 =
FFMIN(int_y+1, max_y);
266
267 for (
i = 0;
i < src_linestep;
i+=2) {
268 int s00 =
AV_RL16(&
src[src_linestep * int_x +
i + src_linesize * int_y ]);
269 int s01 =
AV_RL16(&
src[src_linestep * int_x1 +
i + src_linesize * int_y ]);
270 int s10 =
AV_RL16(&
src[src_linestep * int_x +
i + src_linesize * int_y1]);
271 int s11 =
AV_RL16(&
src[src_linestep * int_x1 +
i + src_linesize * int_y1]);
272 int64_t
s0 = (((1<<16) - frac_x)*s00 + frac_x*s01);
273 int64_t
s1 = (((1<<16) - frac_x)*s10 + frac_x*s11);
274
275 AV_WL16(&dst_color[
i], (((1<<16) - frac_y)*
s0 + frac_y*
s1) >> 32);
276 }
277
278 return dst_color;
279 }
280
282 {
288 double res;
289 char *expr;
290
293
296
299 else
301
310
316 "Error occurred parsing angle expression '%s'\n", rot->
angle_expr_str);
318 }
319
320 #define SET_SIZE_EXPR(name, opt_name) do { \
321 ret = av_expr_parse_and_eval(&res, expr = rot->name##_expr_str, \
322 var_names, rot->var_values, \
323 func1_names, func1, NULL, NULL, rot, 0, ctx); \
324 if (ret < 0 || isnan(res) || isinf(res) || res <= 0) { \
325 av_log(ctx, AV_LOG_ERROR, \
326 "Error parsing or evaluating expression for option %s: " \
327 "invalid expression '%s' or non-positive or indefinite value %f\n", \
328 opt_name, expr, res); \
329 return ret; \
330 } \
331 } while (0)
332
333 /* evaluate width and height */
337 rot->
outw = res + 0.5;
340 rot->
outh = res + 0.5;
341
342 /* evaluate the width again, as it may depend on the evaluated output height */
345 rot->
outw = res + 0.5;
346
347 /* compute number of planes */
349 outlink->
w = rot->
outw;
350 outlink->
h = rot->
outh;
351 return 0;
352 }
353
355 {
356 int v;
357 switch (elem_size) {
358 case 1:
359 *pout = *pin;
360 break;
361 case 2:
362 *((uint16_t *)pout) = *((uint16_t *)pin);
363 break;
364 case 3:
367 break;
368 case 4:
369 *((uint32_t *)pout) = *((uint32_t *)pin);
370 break;
371 default:
372 memcpy(pout, pin, elem_size);
373 break;
374 }
375 }
376
378 {
380 switch(angle) {
381 case 0:
382 memcpy(dst,
src, elem_size *
len);
383 break;
384 case 1:
387 break;
388 case 2:
391 break;
392 case 3:
395 break;
396 }
397 }
398
400 {
401 switch(elem_size) {
407 }
408 }
409
411 {
416 const int outw =
td->outw, outh =
td->outh;
417 const int inw =
td->inw, inh =
td->inh;
418 const int plane =
td->plane;
419 const int xi =
td->xi, yi =
td->yi;
420 const int c =
td->c,
s =
td->s;
421 const int start = (outh * job ) / nb_jobs;
422 const int end = (outh * (job+1)) / nb_jobs;
423 int xprime =
td->xprime + start *
s;
424 int yprime =
td->yprime + start *
c;
426
427 for (j = start; j < end; j++) {
428 x = xprime +
xi +
FIXP*(inw-1)/2;
429 y = yprime + yi +
FIXP*(inh-1)/2;
430
431 if (
fabs(rot->
angle - 0) < FLT_EPSILON && outw == inw && outh == inh) {
435 }
else if (
fabs(rot->
angle -
M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
439 }
else if (
fabs(rot->
angle -
M_PI) < FLT_EPSILON && outw == inw && outh == inh) {
443 }
else if (
fabs(rot->
angle - 3*
M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
447 } else {
448
449 for (
i = 0;
i < outw;
i++) {
451 int x1, y1;
452 uint8_t *pin, *pout;
453 x1 = x>>16;
454 y1 = y>>16;
455
456 /* the out-of-range values avoid border artifacts */
457 if (x1 >= -1 && x1 <= inw && y1 >= -1 && y1 <= inh) {
458 uint8_t inp_inv[4]; /* interpolated input value */
463 x, y, inw-1, inh-1);
464 } else {
465 int x2 =
av_clip(x1, 0, inw-1);
466 int y2 =
av_clip(y1, 0, inh-1);
468 }
470 case 1:
471 *pout = *pin;
472 break;
473 case 2:
476 break;
477 case 3:
480 break;
481 case 4:
482 *((uint32_t *)pout) = *((uint32_t *)pin);
483 break;
484 default:
486 break;
487 }
488 }
491 }
492 }
495 }
496
497 return 0;
498 }
499
501 {
506 int angle_int,
s,
c, plane;
507 double res;
508
513 }
515
519
522
523 angle_int = res *
FIXP * 16;
526
527 /* fill background */
530 0, 0, outlink->
w, outlink->
h);
531
532 for (plane = 0; plane < rot->
nb_planes; plane++) {
533 int hsub = plane == 1 || plane == 2 ? rot->
hsub : 0;
534 int vsub = plane == 1 || plane == 2 ? rot->
vsub : 0;
540 .outh = outh, .outw = outw,
541 .xi = -(outw-1) *
c / 2, .yi = (outw-1) *
s / 2,
542 .xprime = -(outh-1) *
s / 2,
543 .yprime = -(outh-1) *
c / 2,
544 .plane = plane, .c =
c, .s =
s };
545
548 }
549
552 }
553
555 char *res,
int res_len,
int flags)
556 {
559
560 if (!strcmp(cmd, "angle") || !strcmp(cmd, "a")) {
566 "Error when parsing the expression '%s' for angle command\n", args);
569 }
571 } else
573
575 }
576
578 {
582 },
583 };
584
586 {
590 },
591 };
592
603 .priv_class = &rotate_class,
605 };
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
static int64_t int_sin(int64_t a)
Compute the sin of a using integer values.
@ AV_PIX_FMT_YUV420P9LE
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
AVPixelFormat
Pixel format.
Filter the word "frame" indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
int av_parse_color(uint8_t *rgba_color, const char *color_string, int slen, void *log_ctx)
Put the RGBA values that correspond to color_string in rgba_color.
#define FILTER_PIXFMTS_ARRAY(array)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
int depth
Number of bits in the component.
@ AV_PIX_FMT_YUV420P16LE
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
static int filter_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
uint8_t fillcolor[4]
color expressed either in YUVA or RGBA colorspace for the padding area
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
const char * name
Filter name.
static uint8_t * interpolate_bilinear16(uint8_t *dst_color, const uint8_t *src, int src_linesize, int src_linestep, int x, int y, int max_x, int max_y)
Interpolate the color in src at position x and y using bilinear interpolation.
A link between two filters.
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
int pixelstep[MAX_PLANES]
static double get_rotated_h(void *opaque, double angle)
@ AV_PIX_FMT_YUV444P16LE
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
int av_expr_parse(AVExpr **expr, const char *s, const char *const *const_names, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), int log_offset, void *log_ctx)
Parse an expression.
const AVFilter ff_vf_rotate
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
AVFILTER_DEFINE_CLASS(rotate)
static av_always_inline void simple_rotate_internal(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
AVExpr * angle_expr
parsed expression for the angle
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
@ AV_PIX_FMT_YUV420P12LE
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
static const char *const func1_names[]
void av_expr_free(AVExpr *e)
Free a parsed expression previously created with av_expr_parse().
A filter pad used for either input or output.
@ AV_PIX_FMT_YUV420P10LE
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
static void rotate(const float rot_quaternion[2][4], float *vec)
Rotate vector with given rotation quaternion.
@ AV_PIX_FMT_YUV444P12LE
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_CEIL_RSHIFT(a, b)
uint8_t *(* interpolate_bilinear)(uint8_t *dst_color, const uint8_t *src, int src_linesize, int src_linestep, int x, int y, int max_x, int max_y)
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
#define xi(width, name, var, range_min, range_max, subs,...)
double av_expr_eval(AVExpr *e, const double *const_values, void *opaque)
Evaluate a previously parsed expression.
int ff_draw_init(FFDrawContext *draw, enum AVPixelFormat format, unsigned flags)
uint8_t log2_chroma_w
Amount to shift the luma width right to find the chroma width.
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define FILTER_INPUTS(array)
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
@ AV_PIX_FMT_YUV444P10LE
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Describe the class of an AVClass context structure.
static __device__ float fabs(float a)
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
static av_cold int init(AVFilterContext *ctx)
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
@ AV_PIX_FMT_YUVA444P9LE
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
@ AV_PIX_FMT_YUVA420P16LE
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
@ AV_PIX_FMT_BGR0
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
@ AV_PIX_FMT_YUVA420P9LE
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
static av_always_inline void simple_rotate(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_expr_parse_and_eval(double *d, const char *s, const char *const *const_names, const double *const_values, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), void *opaque, int log_offset, void *log_ctx)
Parse and evaluate an expression.
void ff_fill_rectangle(FFDrawContext *draw, FFDrawColor *color, uint8_t *dst[], int dst_linesize[], int dst_x, int dst_y, int w, int h)
Fill a rectangle with an uniform color.
AVFilterContext * src
source filter
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
static const AVFilterPad rotate_inputs[]
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
@ AV_PIX_FMT_YUVA420P10LE
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
static const AVFilterPad rotate_outputs[]
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
#define SET_SIZE_EXPR(name, opt_name)
static const AVOption rotate_options[]
static av_cold void uninit(AVFilterContext *ctx)
static double(*const func1[])(void *, double)
static double get_rotated_w(void *opaque, double angle)
#define i(width, name, range_min, range_max)
int w
agreed upon image width
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Used for passing data between threads.
const char * name
Pad name.
void ff_draw_color(FFDrawContext *draw, FFDrawColor *color, const uint8_t rgba[4])
Prepare a color.
@ AV_PIX_FMT_0BGR
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
static int config_props(AVFilterLink *outlink)
int h
agreed upon image height
double var_values[VAR_VARS_NB]
@ AV_PIX_FMT_YUV444P9LE
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
char * angle_expr_str
expression for the angle
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
static const char *const var_names[]
@ AV_PIX_FMT_YUVA444P10LE
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static enum AVPixelFormat pix_fmts[]
#define FILTER_OUTPUTS(array)
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
@ AV_PIX_FMT_0RGB
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
static uint8_t * interpolate_bilinear8(uint8_t *dst_color, const uint8_t *src, int src_linesize, int src_linestep, int x, int y, int max_x, int max_y)
Interpolate the color in src at position x and y using bilinear interpolation.
@ AV_PIX_FMT_YUVA444P16LE
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_RB24
static av_always_inline void copy_elem(uint8_t *pout, const uint8_t *pin, int elem_size)
uint8_t log2_chroma_h
Amount to shift the luma height right to find the chroma height.
Generated on Tue Feb 28 2023 21:33:58 for FFmpeg by
doxygen
1.8.17