1 /*
2 * Copyright (c) 2011 Stefano Sabatini
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file
23 * Compute a look-up table for binding the input value to the output
24 * value, and apply it to input video.
25 */
26
27 #include "config_components.h"
28
40
42 "w", ///< width of the input video
43 "h", ///< height of the input video
44 "val", ///< input value for the pixel
45 "maxval", ///< max value for the pixel
46 "minval", ///< min value for the pixel
47 "negval", ///< negated value
48 "clipval",
50 };
51
61 };
62
65 uint16_t
lut[4][256 * 256];
///< lookup table for each component
75
83
84 #define OFFSET(x) offsetof(LutContext, x)
85 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
86
100 };
101
103 {
106
107 for (
i = 0;
i < 4;
i++) {
111 }
112 }
113
114 #define YUV_FORMATS \
115 AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P, \
116 AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P, \
117 AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, \
118 AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, \
119 AV_PIX_FMT_YUVJ440P, \
120 AV_PIX_FMT_YUV444P9LE, AV_PIX_FMT_YUV422P9LE, AV_PIX_FMT_YUV420P9LE, \
121 AV_PIX_FMT_YUV444P10LE, AV_PIX_FMT_YUV422P10LE, AV_PIX_FMT_YUV420P10LE, AV_PIX_FMT_YUV440P10LE, \
122 AV_PIX_FMT_YUV444P12LE, AV_PIX_FMT_YUV422P12LE, AV_PIX_FMT_YUV420P12LE, AV_PIX_FMT_YUV440P12LE, \
123 AV_PIX_FMT_YUV444P14LE, AV_PIX_FMT_YUV422P14LE, AV_PIX_FMT_YUV420P14LE, \
124 AV_PIX_FMT_YUV444P16LE, AV_PIX_FMT_YUV422P16LE, AV_PIX_FMT_YUV420P16LE, \
125 AV_PIX_FMT_YUVA444P16LE, AV_PIX_FMT_YUVA422P16LE, AV_PIX_FMT_YUVA420P16LE
126
127 #define RGB_FORMATS \
128 AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA, \
129 AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA, \
130 AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, \
131 AV_PIX_FMT_RGB48LE, AV_PIX_FMT_RGBA64LE, \
132 AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, \
133 AV_PIX_FMT_GBRP9LE, AV_PIX_FMT_GBRP10LE, \
134 AV_PIX_FMT_GBRAP10LE, \
135 AV_PIX_FMT_GBRP12LE, AV_PIX_FMT_GBRP14LE, \
136 AV_PIX_FMT_GBRP16LE, AV_PIX_FMT_GBRAP12LE, \
137 AV_PIX_FMT_GBRAP16LE
138
139 #define GRAY_FORMATS \
140 AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9LE, AV_PIX_FMT_GRAY10LE, \
141 AV_PIX_FMT_GRAY12LE, AV_PIX_FMT_GRAY14LE, AV_PIX_FMT_GRAY16LE
142
146
148 {
150
155 }
156
157 /**
158 * Clip value val in the minval - maxval range.
159 */
161 {
165
167 }
168
169 /**
170 * Compute gamma correction for value val, assuming the minval-maxval
171 * range, val is clipped to a value contained in the same interval.
172 */
174 {
179
180 return pow((
val-minval)/(maxval-minval), gamma) * (maxval-minval)+minval;
181 }
182
183 /**
184 * Compute ITU Rec.709 gamma correction of value val.
185 */
187 {
192 double level = (
val - minval) / (maxval - minval);
194 : 1.099 * pow(
level, 1.0 / gamma) - 0.099;
195 return level * (maxval - minval) + minval;
196 }
197
203 };
204
206 "clip",
207 "gammaval",
208 "gammaval709",
210 };
211
213 {
217 uint8_t rgba_map[4]; /* component index -> RGBA color index map */
220
221 s->hsub =
desc->log2_chroma_w;
222 s->vsub =
desc->log2_chroma_h;
223
226 s->is_16bit =
desc->comp[0].depth > 8;
227
264 min[
Y] = 16 * (1 << (
desc->comp[0].depth - 8));
265 min[
U] = 16 * (1 << (
desc->comp[1].depth - 8));
266 min[
V] = 16 * (1 << (
desc->comp[2].depth - 8));
268 max[
Y] = 235 * (1 << (
desc->comp[0].depth - 8));
269 max[
U] = 240 * (1 << (
desc->comp[1].depth - 8));
270 max[
V] = 240 * (1 << (
desc->comp[2].depth - 8));
271 max[
A] = (1 <<
desc->comp[0].depth) - 1;
272 break;
277 break;
278 default:
281 }
282
283 s->is_yuv =
s->is_rgb = 0;
287
292 s->step =
s->step >> 1;
293 }
294 }
295
297 double res;
299
300 /* create the parsed expression */
307 "Error when parsing the expression '%s' for the component %d and color %d.\n",
310 }
311
312 /* compute the lut */
315
322
326 "Error when evaluating the expression '%s' for the value %d for the component %d.\n",
329 }
332 }
333 }
334
335 return 0;
336 }
337
341
344 };
345
346 #define LOAD_PACKED_COMMON\
347 LutContext *s = ctx->priv;\
348 const struct thread_data *td = arg;\
349 \
350 int i, j;\
351 const int w = td->w;\
352 const int h = td->h;\
353 AVFrame *in = td->in;\
354 AVFrame *out = td->out;\
355 const uint16_t (*tab)[256*256] = (const uint16_t (*)[256*256])s->lut;\
356 const int step = s->step;\
357 \
358 const int slice_start = (h * jobnr ) / nb_jobs;\
359 const int slice_end = (h * (jobnr+1)) / nb_jobs;\
360
361 /* packed, 16-bit */
363 {
365
366 uint16_t *inrow, *outrow, *inrow0, *outrow0;
367 const int in_linesize = in->linesize[0] / 2;
368 const int out_linesize =
out->linesize[0] / 2;
369 inrow0 = (uint16_t *)in ->
data[0];
370 outrow0 = (uint16_t *)
out->data[0];
371
373 inrow = inrow0 +
i * in_linesize;
374 outrow = outrow0 +
i * out_linesize;
375 for (j = 0; j <
w; j++) {
376
378 #if HAVE_BIGENDIAN
383 #else
384 case 4: outrow[3] =
tab[3][inrow[3]];
// Fall-through
385 case 3: outrow[2] =
tab[2][inrow[2]];
// Fall-through
386 case 2: outrow[1] =
tab[1][inrow[1]];
// Fall-through
387 default: outrow[0] =
tab[0][inrow[0]];
388 #endif
389 }
392 }
393 }
394
395 return 0;
396 }
397
398 /* packed, 8-bit */
400 {
402
403 uint8_t *inrow, *outrow, *inrow0, *outrow0;
404 const int in_linesize = in->linesize[0];
405 const int out_linesize =
out->linesize[0];
406 inrow0 = in ->data[0];
407 outrow0 =
out->data[0];
408
410 inrow = inrow0 +
i * in_linesize;
411 outrow = outrow0 +
i * out_linesize;
412 for (j = 0; j <
w; j++) {
414 case 4: outrow[3] =
tab[3][inrow[3]];
// Fall-through
415 case 3: outrow[2] =
tab[2][inrow[2]];
// Fall-through
416 case 2: outrow[1] =
tab[1][inrow[1]];
// Fall-through
417 default: outrow[0] =
tab[0][inrow[0]];
418 }
421 }
422 }
423
424 return 0;
425 }
426
427 #define LOAD_PLANAR_COMMON\
428 LutContext *s = ctx->priv;\
429 const struct thread_data *td = arg;\
430 int i, j, plane;\
431 AVFrame *in = td->in;\
432 AVFrame *out = td->out;\
433
434 #define PLANAR_COMMON\
435 int vsub = plane == 1 || plane == 2 ? s->vsub : 0;\
436 int hsub = plane == 1 || plane == 2 ? s->hsub : 0;\
437 int h = AV_CEIL_RSHIFT(td->h, vsub);\
438 int w = AV_CEIL_RSHIFT(td->w, hsub);\
439 const uint16_t *tab = s->lut[plane];\
440 \
441 const int slice_start = (h * jobnr ) / nb_jobs;\
442 const int slice_end = (h * (jobnr+1)) / nb_jobs;\
443
444 /* planar >8 bit depth */
446 {
448
449 uint16_t *inrow, *outrow;
450
451 for (plane = 0; plane < 4 && in->data[plane] && in->linesize[plane]; plane++) {
453
454 const int in_linesize = in->linesize[plane] / 2;
455 const int out_linesize =
out->linesize[plane] / 2;
456
457 inrow = (uint16_t *)in ->
data[plane] + slice_start * in_linesize;
458 outrow = (uint16_t *)
out->data[plane] + slice_start * out_linesize;
459
461 for (j = 0; j <
w; j++) {
462 #if HAVE_BIGENDIAN
464 #else
465 outrow[j] =
tab[inrow[j]];
466 #endif
467 }
468 inrow += in_linesize;
469 outrow += out_linesize;
470 }
471 }
472
473 return 0;
474 }
475
476 /* planar 8bit depth */
478 {
480
481 uint8_t *inrow, *outrow;
482
483 for (plane = 0; plane < 4 && in->data[plane] && in->linesize[plane]; plane++) {
485
486 const int in_linesize = in->linesize[plane];
487 const int out_linesize =
out->linesize[plane];
488
489 inrow = in ->data[plane] + slice_start * in_linesize;
490 outrow =
out->data[plane] + slice_start * out_linesize;
491
493 for (j = 0; j <
w; j++)
494 outrow[j] =
tab[inrow[j]];
495 inrow += in_linesize;
496 outrow += out_linesize;
497 }
498 }
499
500 return 0;
501 }
502
503 #define PACKED_THREAD_DATA\
504 struct thread_data td = {\
505 .in = in,\
506 .out = out,\
507 .w = inlink->w,\
508 .h = in->height,\
509 };\
510
511 #define PLANAR_THREAD_DATA\
512 struct thread_data td = {\
513 .in = in,\
514 .out = out,\
515 .w = inlink->w,\
516 .h = inlink->h,\
517 };\
518
520 {
526
530 } else {
535 }
537 }
538
539 if (
s->is_rgb &&
s->is_16bit && !
s->is_planar) {
540 /* packed, 16-bit */
544 }
else if (
s->is_rgb && !
s->is_planar) {
545 /* packed 8 bits */
549 }
else if (
s->is_16bit) {
550 /* planar >8 bit depth */
554 } else {
555 /* planar 8bit depth */
559 }
560
563
565 }
566
568 char *res,
int res_len,
int flags)
569 {
571
574
576 }
577
583 },
584 };
588 },
589 };
590
591 #define DEFINE_LUT_FILTER(name_, description_, priv_class_) \
592 const AVFilter ff_vf_##name_ = { \
593 .name = #name_, \
594 .description = NULL_IF_CONFIG_SMALL(description_), \
595 .priv_class = &priv_class_ ## _class, \
596 .priv_size = sizeof(LutContext), \
597 .init = name_##_init, \
598 .uninit = uninit, \
599 FILTER_INPUTS(inputs), \
600 FILTER_OUTPUTS(outputs), \
601 FILTER_QUERY_FUNC(query_formats), \
602 .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | \
603 AVFILTER_FLAG_SLICE_THREADS, \
604 .process_command = process_command, \
605 }
606
608
609 #if CONFIG_LUT_FILTER
610
611 #define lut_init NULL
612 DEFINE_LUT_FILTER(lut,
"Compute and apply a lookup table to the RGB/YUV input video.",
613 lut);
614 #undef lut_init
615 #endif
616
617 #if CONFIG_LUTYUV_FILTER
618
620 {
622
624
625 return 0;
626 }
627
628 DEFINE_LUT_FILTER(lutyuv,
"Compute and apply a lookup table to the YUV input video.",
629 lut);
630 #endif
631
632 #if CONFIG_LUTRGB_FILTER
633
635 {
637
639
640 return 0;
641 }
642
643 DEFINE_LUT_FILTER(lutrgb,
"Compute and apply a lookup table to the RGB input video.",
644 lut);
645 #endif