1 /*
2 * Copyright (c) 2013, The WebRTC project authors. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are
6 * met:
7 *
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * * Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * * Neither the name of Google nor the names of its contributors may
17 * be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
39
44 #define NASUB_MAX 4
45 #define LPC_FILTERORDER 10
46 #define NSUB_MAX 6
48
49 #define ST_MEM_L_TBL 85
50 #define MEM_LF_TBL 147
51 #define STATE_SHORT_LEN_20MS 57
52 #define STATE_SHORT_LEN_30MS 58
53
54 #define BLOCKL_MAX 240
57 #define CB_HALFFILTERLEN 4
58 #define CB_FILTERLEN 8
59
60 #define ENH_NBLOCKS_TOT 8
62 #define ENH_BUFL (ENH_NBLOCKS_TOT)*ENH_BLOCKL
63 #define ENH_BUFL_FILTEROVERHEAD 3
64 #define BLOCKL_MAX 240
72 #define STATE_SHORT_LEN_30MS 58
73 #define STATE_SHORT_LEN_20MS 57
74
75 #define SPL_MUL_16_16(a, b) ((int32_t) (((int16_t)(a)) * ((int16_t)(b))))
76 #define SPL_MUL_16_16_RSFT(a, b, c) (SPL_MUL_16_16(a, b) >> (c))
77
88
92
96
129
131 {
134 int j;
135
139
151 } else {
164 }
165
166 for (j = 0; j < 48; j++)
168
170 for (; j < 57; j++)
172
178 } else {
179 for (; j < 58; j++)
181
199 }
200
201 for (j = 0; j < 56; j++)
203
226 } else {
265 }
266
268 }
269
271 {
272 int k;
273
274 for (k = 4; k < 6; k++) {
277 }
else if (
index[k] >= 108 &&
index[k] < 128) {
279 }
280 }
281 }
282
284 {
285 int i, j,
pos = 0, cb_pos = 0;
286
290 }
291
294 }
295
296 if (lpc_n > 1) {
298 cb_pos = 0;
303 }
304
307 }
308 }
309 }
310
312 {
313 for (int n = 0; n < 2; n++) {
314 for (int m = 0; m < nb_vectors; m++) {
315 for (
int k = 0; k <
dim - 1; k++) {
317
318 if ((lsf[
i + 1] - lsf[
i]) < 319) {
319 if (lsf[
i + 1] < lsf[
i]) {
320 lsf[
i + 1] = lsf[
i] + 160;
321 lsf[
i] = lsf[
i + 1] - 160;
322 } else {
325 }
326 }
327
329 }
330 }
331 }
332 }
333
335 int16_t *in2, int16_t coef,
337 {
338 int invcoef = 16384 - coef,
i;
339
341 out[
i] = (coef * in1[
i] + invcoef * in2[
i] + 8192) >> 14;
342 }
343
344 static void lsf2lsp(int16_t *lsf, int16_t *lsp,
int order)
345 {
349
350 for (
i = 0;
i < order;
i++) {
351 freq = (lsf[
i] * 20861) >> 15;
352 /* 20861: 1.0/(2.0*PI) in Q17 */
353 /*
354 Upper 8 bits give the index k and
355 Lower 8 bits give the difference, which needs
356 to be approximated linearly
357 */
358 k =
FFMIN(freq >> 8, 63);
360
361 /* Calculate linear approximation */
364 }
365 }
366
368 {
369 int16_t high, low;
372
374 f[1] = lsp[0] * -1024;
375
376 for (
i = 2, k = 2, l = 2;
i <= 5;
i++, k += 2) {
378
379 for (j =
i; j > 1; j--, l--) {
380 high =
f[l - 1] >> 16;
381 low = (
f[l - 1] - (high * (1 << 16))) >> 1;
382
383 tmp = ((high * lsp[k]) * 4) + (((low * lsp[k]) >> 15) * 4);
384
386 f[l] -= (unsigned)
tmp;
387 }
388
389 f[l] -= lsp[k] * (1 << 10);
391 }
392 }
393
395 {
397 int16_t lsp[10];
400
402
405
406 for (
i = 5;
i > 0;
i--) {
407 f[0][
i] += (unsigned)
f[0][
i - 1];
408 f[1][
i] -= (unsigned)
f[1][
i - 1];
409 }
410
412 for (
i = 5;
i > 0;
i--) {
413 tmp =
f[0][6 -
i] + (unsigned)
f[1][6 -
i] + 4096;
414 a[6 -
i] =
tmp >> 13;
415
416 tmp =
f[0][6 -
i] - (unsigned)
f[1][6 -
i] + 4096;
417 a[5 +
i] =
tmp >> 13;
418 }
419 }
420
422 int16_t *lsf2, int coef, int length)
423 {
425
428 }
429
430 static void bw_expand(int16_t *
out,
const int16_t *in,
const int16_t *coef,
int length)
431 {
433
435 for (
i = 1;
i < length;
i++)
436 out[
i] = (coef[
i] * in[
i] + 16384) >> 15;
437 }
438
440 int16_t *lsfdeq, int16_t length,
442 {
444 int i,
pos, lp_length;
445
446 lsfdeq2 = lsfdeq + length;
447 lp_length = length + 1;
448
451 memcpy(syntdenum, lp, lp_length * 2);
453
455 for (
i = 1;
i < 6;
i++) {
458 length);
459 memcpy(syntdenum +
pos, lp, lp_length * 2);
462 }
463 } else {
465 for (
i = 0;
i <
s->nsub;
i++) {
468 memcpy(syntdenum +
pos, lp, lp_length * 2);
471 }
472 }
473
475 memcpy(
s->lsfdeqold, lsfdeq2, length * 2);
476 } else {
477 memcpy(
s->lsfdeqold, lsfdeq, length * 2);
478 }
479 }
480
482 int16_t *
B, int16_t B_length,
483 int16_t length)
484 {
486
487 for (
i = 0;
i < length;
i++) {
488 const int16_t *b_ptr = &
B[0];
489 const int16_t *x_ptr = &in_ptr[
i];
490
491 o = 0;
492 for (j = 0; j < B_length; j++)
493 o += b_ptr[j] * *x_ptr--;
494
495 o =
av_clip(o, -134217728, 134215679);
496
497 out_ptr[
i] = ((o + 2048) >> 12);
498 }
499 }
500
502 int16_t *data_out,
504 int coefficients_length,
505 int data_length)
506 {
508
509 for (
i = 0;
i < data_length;
i++) {
511
512 for (j = coefficients_length - 1; j > 0; j--) {
514 }
515
518
519 data_out[
i] = (
output + 2048) >> 12;
520 }
521 }
522
524 int16_t *synt_denum, int16_t *Out_fix,
526 {
527 int k;
528 int16_t maxVal;
529 int16_t *tmp1, *tmp2, *tmp3;
530 /* Stack based */
537
538 /* initialization of coefficients */
539
542 }
543
544 /* decoding of the maximum value */
545
547
548 /* decoding of the sample values */
549 tmp1 = sampleVal;
550 tmp2 = &idx[
len - 1];
551
552 if (ifm < 37) {
553 for (k = 0; k <
len; k++) {
554 /*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 2097152 (= 0.5 << 22)
555 maxVal is in Q8 and result is in Q(-1) */
557 tmp1++;
558 tmp2--;
559 }
560 } else if (ifm < 59) {
561 for (k = 0; k <
len; k++) {
562 /*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 262144 (= 0.5 << 19)
563 maxVal is in Q5 and result is in Q(-1) */
565 tmp1++;
566 tmp2--;
567 }
568 } else {
569 for (k = 0; k <
len; k++) {
570 /*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 65536 (= 0.5 << 17)
571 maxVal is in Q3 and result is in Q(-1) */
573 tmp1++;
574 tmp2--;
575 }
576 }
577
578 /* Set the rest of the data to zero */
579 memset(&sampleVal[
len], 0,
len * 2);
580
581 /* circular convolution with all-pass filter */
582
583 /* Set the state to zero */
585
586 /* Run MA filter + AR filter */
590
591 tmp1 = &sampleAr[
len - 1];
592 tmp2 = &sampleAr[2 *
len - 1];
593 tmp3 = Out_fix;
594 for (k = 0; k <
len; k++) {
595 (*tmp3) = (*tmp1) + (*tmp2);
596 tmp1--;
597 tmp2--;
598 tmp3++;
599 }
600 }
601
603 {
605
607 }
608
611 int length,
int shift)
612 {
613 for (
int i = 0;
i < length;
i++)
615 }
616
618 const int16_t *
win,
int length,
620 {
621 for (
int i = 0;
i < length;
i++)
623 }
624
626 const int16_t *in2, int length,
628 {
629 for (
int i = 0;
i < length;
i++)
631 }
632
634 {
635 int16_t cbVecTmp[4];
637 int16_t ilow =
index - interpolation_length;
638
640
644
646 }
647
648 static void get_codebook(int16_t * cbvec,
/* (o) Constructed codebook vector */
649 int16_t * mem, /* (i) Codebook buffer */
650 int16_t
index,
/* (i) Codebook index */
651 int16_t lMem, /* (i) Length of codebook buffer */
652 int16_t cbveclen /* (i) Codebook vector length */
653 )
654 {
655 int16_t k, base_size;
656 int16_t lag;
657 /* Stack based */
658 int16_t tempbuff2[
SUBL + 5];
659
660 /* Determine size of codebook sections */
661 base_size = lMem - cbveclen + 1;
662
663 if (cbveclen ==
SUBL) {
664 base_size += cbveclen / 2;
665 }
666
667 /* No filter -> First codebook section */
668 if (
index < lMem - cbveclen + 1) {
669 /* first non-interpolated vectors */
670
671 k =
index + cbveclen;
672 /* get vector */
673 memcpy(cbvec, mem + lMem - k, cbveclen * 2);
674 }
else if (
index < base_size) {
675
676 /* Calculate lag */
677
679
680 lag = k / 2;
681
683 } else {
684 int16_t memIndTest;
685
686 /* first non-interpolated vectors */
687
688 if (
index - base_size < lMem - cbveclen + 1) {
689
690 /* Set up filter memory, stuff zeros outside memory buffer */
691
692 memIndTest = lMem - (
index - base_size + cbveclen);
693
696
697 /* do filtering to get the codebook vector */
698
700 } else {
701 /* interpolated vectors */
702 /* Stuff zeros outside memory buffer */
705
706 /* do filtering */
708
709 /* Calculate lag index */
710 lag = (cbveclen << 1) - 20 +
index - base_size - lMem - 1;
711
713 }
714 }
715 }
716
718 int16_t *decvector, /* (o) Decoded vector */
719 int16_t *
index,
/* (i) Codebook indices */
720 int16_t *gain_index, /* (i) Gain quantization indices */
721 int16_t *mem, /* (i) Buffer for codevector construction */
722 int16_t lMem, /* (i) Length of buffer */
723 int16_t veclen)
724 {
726 int16_t cbvec0[
SUBL];
727 int16_t cbvec1[
SUBL];
728 int16_t cbvec2[
SUBL];
729 unsigned a32;
730 int16_t *gainPtr;
731 int j;
732
733 /* gain de-quantization */
734
738
739 /* codebook vector construction and construction of total vector */
740
741 /* Stack based */
745
746 gainPtr = &gain[0];
747 for (j = 0; j < veclen; j++) {
751 gainPtr -= 2;
752 decvector[j] = (
int)(a32 + 8192) >> 14;
753 }
754 }
755
757 {
758 int16_t* destPtr = dest;
759 int16_t* sourcePtr =
source;
760 int j;
761
762 for (j = 0; j < length; j++)
763 *destPtr-- = *sourcePtr++;
764 }
765
768 int16_t *decresidual,
769 int16_t *syntdenum)
770 {
771 int16_t meml_gotten, Nfor, Nback,
diff, start_pos;
772 int16_t subcount, subframe;
773 int16_t *reverseDecresidual =
s->enh_buf;
/* Reversed decoded data, used for decoding backwards in time (reuse memory in state) */
774 int16_t *memVec =
s->prevResidual;
776
778
781 } else {
783 }
784
785 /* decode scalar part of start state */
786
788
789 if (encbits->
state_first) {
/* put adaptive part in the end */
790 /* setup memory */
791 memset(mem, 0, (int16_t) (
CB_MEML -
s->state_short_len) * 2);
792 memcpy(mem +
CB_MEML -
s->state_short_len, decresidual + start_pos,
s->state_short_len * 2);
793
794 /* construct decoded vector */
795
797
798 } else { /* put adaptive part in the beginning */
799 /* setup memory */
800 meml_gotten =
s->state_short_len;
802 memset(mem, 0, (int16_t) (
CB_MEML - meml_gotten) * 2);
803
804 /* construct decoded vector */
806
807 /* get decoded residual from reversed vector */
809 }
810
811 /* counter for predicted subframes */
812 subcount = 1;
813
814 /* forward prediction of subframes */
815 Nfor =
s->nsub - encbits->
start - 1;
816
817 if (Nfor > 0) {
818 /* setup memory */
821
822 /* loop over subframes to encode */
823 for (subframe = 0; subframe < Nfor; subframe++) {
824 /* construct decoded vector */
826
827 /* update memory */
830
831 subcount++;
832 }
833
834 }
835
836 /* backward prediction of subframes */
837 Nback = encbits->
start - 1;
838
839 if (Nback > 0) {
840 /* setup memory */
841 meml_gotten =
SUBL * (
s->nsub + 1 - encbits->
start);
844 }
845
847 memset(mem, 0, (int16_t) (
CB_MEML - meml_gotten) * 2);
848
849 /* loop over subframes to decode */
850 for (subframe = 0; subframe < Nback; subframe++) {
851 /* construct decoded vector */
854
855 /* update memory */
858
859 subcount++;
860 }
861
862 /* get decoded residual from reversed vector */
864 }
865 }
866
868 {
869 int i = 0, absolute = 0, maximum = 0;
870
871 if (vector ==
NULL || length <= 0) {
872 return -1;
873 }
874
875 for (
i = 0;
i < length;
i++) {
876 absolute =
FFABS(vector[
i]);
877 if (absolute > maximum)
878 maximum = absolute;
879 }
880
881 // Guard the case for abs(-32768).
882 return FFMIN(maximum, INT16_MAX);
883 }
884
886 {
888
889 if (0xFFFF0000 & n) {
891 } else {
893 }
894
895 if (0x0000FF00 & (n >>
bits))
bits += 8;
896 if (0x000000F0 & (n >>
bits))
bits += 4;
897 if (0x0000000C & (n >>
bits))
bits += 2;
898 if (0x00000002 & (n >>
bits))
bits += 1;
899 if (0x00000001 & (n >>
bits))
bits += 1;
900
902 }
903
905 {
906 int64_t sum = 0;
907
908 for (
int i = 0;
i < length;
i++)
909 sum += (v1[
i] * v2[
i]) >> scaling;
910
912 }
913
915 int16_t lag, int16_t blen, int16_t srange, int16_t
scale)
916 {
917 int16_t *w16ptr;
918
919 w16ptr = &
buffer[blen - srange - lag];
920
923
924 if (*ener == 0) {
925 *corr = 0;
926 *ener = 1;
927 }
928 }
929
930 #define SPL_SHIFT_W32(x, c) (((c) >= 0) ? ((x) << (c)) : ((x) >> (-(c))))
931
933 {
935 return 0;
938 }
939
941 }
942
944 {
945 if (den != 0)
946 return num / den;
947 else
948 return 0x7FFFFFFF;
949 }
950
951 static void do_plc(int16_t *plc_residual,
/* (o) concealed residual */
952 int16_t *plc_lpc, /* (o) concealed LP parameters */
953 int16_t PLI, /* (i) packet loss indicator
954 0 - no PL, 1 = PL */
955 int16_t *decresidual, /* (i) decoded residual */
956 int16_t *lpc, /* (i) decoded LPC (only used for no PL) */
957 int16_t inlag, /* (i) pitch lag */
959 {
961 int32_t cross, ener, cross_comp, ener_comp = 0;
962 int32_t measure, max_measure, energy;
963 int16_t
max, cross_square_max, cross_square;
964 int16_t j, lag, tmp1, tmp2, randlag;
966 int16_t scale3;
967 int16_t corrLen;
969 int16_t use_gain;
970 int16_t tot_gain;
971 int16_t max_perSquare;
972 int16_t scale1, scale2;
973 int16_t totscale;
975 int16_t denom;
976 int16_t pitchfact;
977 int16_t use_lag;
978 int ind;
980
981 /* Packet Loss */
982 if (PLI == 1) {
983
984 s->consPLICount += 1;
985
986 /* if previous frame not lost,
987 determine pitch pred. gain */
988
989 if (
s->prevPLI != 1) {
990
991 /* Maximum 60 samples are correlated, preserve as high accuracy
992 as possible without getting overflow */
995 if (scale3 < 0) {
996 scale3 = 0;
997 }
998
999 /* Store scale for use when interpolating between the
1000 * concealment and the received packet */
1001 s->prevScale = scale3;
1002
1003 /* Search around the previous lag +/-3 to find the
1004 best pitch period */
1005 lag = inlag - 3;
1006
1007 /* Guard against getting outside the frame */
1008 corrLen =
FFMIN(60,
s->block_samples - (inlag + 3));
1009
1010 correlation(&cross, &ener,
s->prevResidual, lag,
s->block_samples, corrLen, scale3);
1011
1012 /* Normalize and store cross^2 and the number of shifts */
1015
1016 for (j = inlag - 2; j <= inlag + 3; j++) {
1017 correlation(&cross_comp, &ener_comp,
s->prevResidual, j,
s->block_samples, corrLen, scale3);
1018
1019 /* Use the criteria (corr*corr)/energy to compare if
1020 this lag is better or not. To avoid the division,
1021 do a cross multiplication */
1024
1027
1030
1031 /* Calculate shift value, so that the two measures can
1032 be put in the same Q domain */
1033 if (((shift_max << 1) + shift3) > ((
shift1 << 1) +
shift2)) {
1035 tmp2 = 0;
1036 } else {
1037 tmp1 = 0;
1039 }
1040
1041 if ((measure >> tmp1) > (max_measure >> tmp2)) {
1042 /* New lag is better => record lag, measure and domain */
1043 lag = j;
1044 cross_square_max = cross_square;
1045 cross = cross_comp;
1047 ener = ener_comp;
1048 }
1049 }
1050
1051 /* Calculate the periodicity for the lag with the maximum correlation.
1052
1053 Definition of the periodicity:
1054 abs(corr(vec1, vec2))/(sqrt(energy(vec1))*sqrt(energy(vec2)))
1055
1056 Work in the Square domain to simplify the calculations
1057 max_perSquare is less than 1 (in Q15)
1058 */
1059 tmp2W32 =
scale_dot_product(&
s->prevResidual[
s->block_samples - corrLen], &
s->prevResidual[
s->block_samples - corrLen], corrLen, scale3);
1060
1061 if ((tmp2W32 > 0) && (ener_comp > 0)) {
1062 /* norm energies to int16_t, compute the product of the energies and
1063 use the upper int16_t as the denominator */
1064
1067
1071
1072 /* Square the cross correlation and norm it such that max_perSquare
1073 will be in Q15 after the division */
1074
1075 totscale = scale1 + scale2 - 1;
1078
1081 } else {
1082 max_perSquare = 0;
1083 }
1084 } else {
1085 /* previous frame lost, use recorded lag and gain */
1087 max_perSquare =
s->per_square;
1088 }
1089
1090 /* Attenuate signal and scale down pitch pred gain if
1091 several frames lost consecutively */
1092
1093 use_gain = 32767; /* 1.0 in Q15 */
1094
1095 if (
s->consPLICount *
s->block_samples > 320) {
1096 use_gain = 29491; /* 0.9 in Q15 */
1097 }
else if (
s->consPLICount *
s->block_samples > 640) {
1098 use_gain = 22938; /* 0.7 in Q15 */
1099 }
else if (
s->consPLICount *
s->block_samples > 960) {
1100 use_gain = 16384; /* 0.5 in Q15 */
1101 }
else if (
s->consPLICount *
s->block_samples > 1280) {
1102 use_gain = 0; /* 0.0 in Q15 */
1103 }
1104
1105 /* Compute mixing factor of picth repeatition and noise:
1106 for max_per>0.7 set periodicity to 1.0
1107 0.4<max_per<0.7 set periodicity to (maxper-0.4)/0.7-0.4)
1108 max_per<0.4 set periodicity to 0.0
1109 */
1110
1111 if (max_perSquare > 7868) { /* periodicity > 0.7 (0.7^4=0.2401 in Q15) */
1112 pitchfact = 32767;
1113 } else if (max_perSquare > 839) { /* 0.4 < periodicity < 0.7 (0.4^4=0.0256 in Q15) */
1114 /* find best index and interpolate from that */
1115 ind = 5;
1116 while ((max_perSquare <
kPlcPerSqr[ind]) && (ind > 0)) {
1117 ind--;
1118 }
1119 /* pitch fact is approximated by first order */
1121
1122 pitchfact =
FFMIN(tmpW32, 32767);
/* guard against overflow */
1123
1124 } else { /* periodicity < 0.4 */
1125 pitchfact = 0;
1126 }
1127
1128 /* avoid repetition of same pitch cycle (buzzyness) */
1129 use_lag = lag;
1130 if (lag < 80) {
1131 use_lag = 2 * lag;
1132 }
1133
1134 /* compute concealed residual */
1135 energy = 0;
1136
1137 for (
i = 0;
i <
s->block_samples;
i++) {
1138 /* noise component - 52 < randlagFIX < 117 */
1140 randlag = 53 + (
s->seed & 63);
1141
1143
1144 if (pick < 0) {
1145 randvec[
i] =
s->prevResidual[
s->block_samples + pick];
1146 } else {
1147 randvec[
i] =
s->prevResidual[pick];
1148 }
1149
1150 /* pitch repeatition component */
1152
1153 if (pick < 0) {
1154 plc_residual[
i] =
s->prevResidual[
s->block_samples + pick];
1155 } else {
1156 plc_residual[
i] = plc_residual[pick];
1157 }
1158
1159 /* Attinuate total gain for each 10 ms */
1161 tot_gain = use_gain;
1162 }
else if (
i < 160) {
1164 } else {
1166 }
1167
1168 /* mix noise and pitch repeatition */
1169 plc_residual[
i] =
SPL_MUL_16_16_RSFT(tot_gain, (pitchfact * plc_residual[
i] + (32767 - pitchfact) * randvec[
i] + 16384) >> 15, 15);
1170
1171 /* Shifting down the result one step extra to ensure that no overflow
1172 will occur */
1174
1175 }
1176
1177 /* less than 30 dB, use only noise */
1178 if (energy <
SPL_SHIFT_W32(
s->block_samples * 900, -
s->prevScale - 1)) {
1179 energy = 0;
1180 for (
i = 0;
i <
s->block_samples;
i++) {
1181 plc_residual[
i] = randvec[
i];
1182 }
1183 }
1184
1185 /* use the old LPC */
1187
1188 /* Update state in case there are multiple frame losses */
1190 s->per_square = max_perSquare;
1191 } else { /* no packet loss, copy input */
1192 memcpy(plc_residual, decresidual,
s->block_samples * 2);
1194 s->consPLICount = 0;
1195 }
1196
1197 /* update state */
1200 memcpy(
s->prevResidual, plc_residual,
s->block_samples * 2);
1201
1202 return;
1203 }
1204
1206 int16_t subl, int16_t searchLen,
1208 {
1209 int16_t maxlag;
1212 int16_t cross_corr_scale, energy_scale;
1213 int16_t cross_corr_sg_mod, cross_corr_sg_mod_max;
1215 int16_t cross_corr_mod, energy_mod, enery_mod_max;
1216 int16_t *tp, *rp;
1217 int16_t *rp_beg, *rp_end;
1218 int16_t totscale, totscale_max;
1219 int16_t scalediff;
1222 int k;
1223
1224 /* Initializations, to make sure that the first one is selected */
1225 cross_corr_sg_mod_max = 0;
1226 enery_mod_max = INT16_MAX;
1227 totscale_max = -500;
1228 maxlag = 0;
1230
1231 /* Find scale value and start position */
1234 rp_beg = regressor;
1235 rp_end = ®ressor[subl];
1236 } else { /* step== -1 */
1238 rp_beg = ®ressor[-1];
1239 rp_end = ®ressor[subl - 1];
1240 }
1241
1242 /* Introduce a scale factor on the energy in int32_t in
1243 order to make sure that the calculation does not
1244 overflow */
1245
1248 } else {
1250 }
1251
1252 /* Calculate the first energy, then do a +/- to get the other energies */
1254
1255 for (k = 0; k < searchLen; k++) {
1256 tp = target;
1257 rp = ®ressor[
pos];
1258
1260
1261 if ((energy > 0) && (cross_corr > 0)) {
1262 /* Put cross correlation and energy on 16 bit word */
1263 cross_corr_scale =
norm_w32(cross_corr) - 16;
1264 cross_corr_mod = (int16_t)
SPL_SHIFT_W32(cross_corr, cross_corr_scale);
1265 energy_scale =
norm_w32(energy) - 16;
1267
1268 /* Square cross correlation and store upper int16_t */
1269 cross_corr_sg_mod = (int16_t)
SPL_MUL_16_16_RSFT(cross_corr_mod, cross_corr_mod, 16);
1270
1271 /* Calculate the total number of (dynamic) right shifts that have
1272 been performed on (cross_corr*cross_corr)/energy
1273 */
1274 totscale = energy_scale - (cross_corr_scale * 2);
1275
1276 /* Calculate the shift difference in order to be able to compare the two
1277 (cross_corr*cross_corr)/energy in the same domain
1278 */
1279 scalediff = totscale - totscale_max;
1280 scalediff =
FFMIN(scalediff, 31);
1281 scalediff =
FFMAX(scalediff, -31);
1282
1283 /* Compute the cross multiplication between the old best criteria
1284 and the new one to be able to compare them without using a
1285 division */
1286
1287 if (scalediff < 0) {
1288 new_crit = ((
int32_t) cross_corr_sg_mod * enery_mod_max) >> (-scalediff);
1289 max_crit = ((
int32_t) cross_corr_sg_mod_max * energy_mod);
1290 } else {
1291 new_crit = ((
int32_t) cross_corr_sg_mod * enery_mod_max);
1292 max_crit = ((
int32_t) cross_corr_sg_mod_max * energy_mod) >> scalediff;
1293 }
1294
1295 /* Store the new lag value if the new criteria is larger
1296 than previous largest criteria */
1297
1298 if (new_crit > max_crit) {
1299 cross_corr_sg_mod_max = cross_corr_sg_mod;
1300 enery_mod_max = energy_mod;
1301 totscale_max = totscale;
1302 maxlag = k;
1303 }
1304 }
1306
1307 /* Do a +/- to get the next energy */
1308 energy += (unsigned)
step * ((*rp_end * *rp_end - *rp_beg * *rp_beg) >>
shifts);
1309
1312 }
1313
1315 }
1316
1317 static void hp_output(int16_t *signal,
const int16_t *ba, int16_t *y,
1318 int16_t *x, int16_t
len)
1319 {
1321
1322 for (
int i = 0;
i <
len;
i++) {
1329
1333
1334 /* Update state (input part) */
1335 x[1] = x[0];
1337
1338 /* Convert back to Q0 and multiply with 2 */
1340
1341 /* Update state (filtered part) */
1342 y[2] = y[0];
1343 y[3] = y[1];
1344
1345 /* upshift tmp by 3 with saturation */
1346 if (
tmp > 268435455) {
1348 }
else if (
tmp < -268435456) {
1350 } else {
1352 }
1353
1355 y[1] = (
tmp - (y[0] * (1 << 16))) >> 1;
1356 }
1357 }
1358
1360 int *got_frame_ptr,
AVPacket *avpkt)
1361 {
1362 const uint8_t *buf = avpkt->
data;
1366
1370
1371 frame->nb_samples =
s->block_samples;
1374
1377 if (
s->frame.start < 1 ||
s->frame.start > 5)
1379
1382
1388
1389 do_plc(
s->plc_residual,
s->plc_lpc, 0,
1392
1393 memcpy(
s->decresidual,
s->plc_residual,
s->block_samples * 2);
1394 }
1395
1397 /* TODO */
1398 } else {
1400
1401 /* Find last lag (since the enhancer is not called to give this info) */
1402 if (
s->mode == 20) {
1403 lag =
xcorr_coeff(&
s->decresidual[
s->block_samples-60], &
s->decresidual[
s->block_samples-80],
1404 60, 80, 20, -1);
1405 } else {
1409 }
1410
1411 /* Store lag (it is needed if next packet is lost) */
1413
1414 /* copy data and run synthesis filter */
1415 memcpy(plc_data,
s->decresidual,
s->block_samples * 2);
1416
1417 /* Set up the filter state */
1419
1420 for (
i = 0;
i <
s->nsub;
i++) {
1424 }
1425
1426 /* Save the filter state */
1428 }
1429
1430 memcpy(
frame->data[0], plc_data,
s->block_samples * 2);
1431
1433 s->hpimemy,
s->hpimemx,
s->block_samples);
1434
1436
1440
1441 *got_frame_ptr = 1;
1442
1444 }
1445
1447 {
1449
1455 s->mode = avctx->
bit_rate <= 14000 ? 30 : 20;
1456 else
1458
1463
1464 if (
s->mode == 30) {
1465 s->block_samples = 240;
1470 } else {
1471 s->block_samples = 160;
1476 }
1477
1478 return 0;
1479 }
1480
1491 };