1 /*
2 * QuickTime RPZA Video Encoder
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file rpzaenc.c
23 * QT RPZA Video Encoder by Todd Kirby <doubleshot@pacbell.net> and David Adler
24 */
25
29
34
37
42
45
48
49 int first_frame;
// flag set to one when the first frame is being processed
50 // so that comparisons with previous frame data in not attempted
52
58
64
65 #define SQR(x) ((x) * (x))
66
67 /* 15 bit components */
68 #define GET_CHAN(color, chan) (((color) >> ((chan) * 5) & 0x1F) * 8)
69 #define R(color) GET_CHAN(color, RED)
70 #define G(color) GET_CHAN(color, GREEN)
71 #define B(color) GET_CHAN(color, BLUE)
72
86
88 {
90
91 color4[0][0] =
min[0];
92 color4[0][1] =
min[1];
93 color4[0][2] =
min[2];
94
95 color4[3][0] =
max[0];
96 color4[3][1] =
max[1];
97 color4[3][2] =
max[2];
98
99 // red components
100 step = (color4[3][0] - color4[0][0] + 1) / 3;
101 color4[1][0] = color4[0][0] +
step;
102 color4[2][0] = color4[3][0] -
step;
103
104 // green components
105 step = (color4[3][1] - color4[0][1] + 1) / 3;
106 color4[1][1] = color4[0][1] +
step;
107 color4[2][1] = color4[3][1] -
step;
108
109 // blue components
110 step = (color4[3][2] - color4[0][2] + 1) / 3;
111 color4[1][2] = color4[0][2] +
step;
112 color4[2][2] = color4[3][2] -
step;
113 }
114
115 /* Fill BlockInfo struct with information about a 4x4 block of the image */
117 {
120
121 // test for right edge block
124 } else {
126 }
127
128 // test for bottom edge block
131 } else {
133 }
134
136 }
137
139 {
140 uint16_t rgb555 = 0;
142
146
150
151 return rgb555;
152 }
153
154 /*
155 * Returns the total difference between two 24 bit color values
156 */
158 {
159 int tot;
160
161 tot =
SQR(colorA[0] - colorB[0]);
162 tot +=
SQR(colorA[1] - colorB[1]);
163 tot +=
SQR(colorA[2] - colorB[2]);
164
165 return tot;
166 }
167
168 /*
169 * Returns the maximum channel difference
170 */
172 {
174
178 }
182 }
186 }
188 }
189
190 /*
191 * Find the channel that has the largest difference between minimum and maximum
192 * color values. Put the minimum value in min, maximum in max and the channel
193 * in chan.
194 */
197 {
198 int x, y;
199 uint8_t min_r, max_r, min_g, max_g, min_b, max_b;
201
202 // fix warning about uninitialized vars
203 min_r = min_g = min_b = UINT8_MAX;
204 max_r = max_g = max_b = 0;
205
206 // loop thru and compare pixels
209 // TODO: optimize
210 min_r =
FFMIN(
R(block_ptr[x]), min_r);
211 min_g =
FFMIN(
G(block_ptr[x]), min_g);
212 min_b =
FFMIN(
B(block_ptr[x]), min_b);
213
214 max_r =
FFMAX(
R(block_ptr[x]), max_r);
215 max_g =
FFMAX(
G(block_ptr[x]), max_g);
216 max_b =
FFMAX(
B(block_ptr[x]), max_b);
217 }
219 }
220
224
225 if (
r >
g &&
r >
b) {
229 }
else if (
g >
b &&
g >=
r) {
233 } else {
237 }
238 }
239
240 /*
241 * Compare two 4x4 blocks to determine if the total difference between the
242 * blocks is greater than the thresh parameter. Returns -1 if difference
243 * exceeds threshold or zero otherwise.
244 */
246 {
251 if (
diff >= thresh) {
252 return -1;
253 }
254 }
257 }
258 return 0;
259 }
260
261 /*
262 * Determine the fit of one channel to another within a 4x4 block. This
263 * is used to determine the best palette choices for 4-color encoding.
264 */
267 double *slope, double *y_intercept, double *correlation_coef)
268 {
269 double sumx = 0, sumy = 0, sumx2 = 0, sumy2 = 0, sumxy = 0,
270 sumx_sq = 0, sumy_sq = 0,
tmp, tmp2;
272 uint8_t x, y;
273
275
276 if (count < 2)
277 return -1;
278
281 x =
GET_CHAN(block_ptr[j], xchannel);
282 y =
GET_CHAN(block_ptr[j], ychannel);
283 sumx += x;
284 sumy += y;
285 sumx2 += x * x;
286 sumy2 += y * y;
287 sumxy += x * y;
288 }
290 }
291
292 sumx_sq = sumx * sumx;
293 tmp = (count * sumx2 - sumx_sq);
294
295 // guard against div/0
297 return -2;
298
299 sumy_sq = sumy * sumy;
300
301 *slope = (sumx * sumy - sumxy) /
tmp;
302 *y_intercept = (sumy - (*slope) * sumx) / count;
303
304 tmp2 = count * sumy2 - sumy_sq;
305 if (tmp2 == 0) {
306 *correlation_coef = 0.0;
307 } else {
308 *correlation_coef = (count * sumxy - sumx * sumy) /
310 }
311
312 return 0; // success
313 }
314
315 /*
316 * Determine the amount of error in the leastsquares fit.
317 */
319 int min,
int max,
int tmp_min,
int tmp_max,
321 {
323 int err;
324 int max_err = 0;
325
328 int x_inc, lin_y, lin_x;
329 x =
GET_CHAN(block_ptr[j], xchannel);
330 y =
GET_CHAN(block_ptr[j], ychannel);
331
332 /* calculate x_inc as the 4-color index (0..3) */
335
336 /* calculate lin_y corresponding to x_inc */
337 lin_y = (
int)(tmp_min + (tmp_max - tmp_min) * x_inc / 3.0 + 0.5);
338
339 err =
FFABS(lin_y - y);
340 if (err > max_err)
341 max_err = err;
342
343 /* calculate lin_x corresponding to x_inc */
345
346 err =
FFABS(lin_x - x);
347 if (err > max_err)
348 max_err += err;
349 }
351 }
352
353 return max_err;
354 }
355
356 /*
357 * Find the closest match to a color within the 4-color palette
358 */
360 {
362 int smallest_variance = INT_MAX;
363 uint8_t dithered_color[3];
364
367 }
368
369 for (int palette_entry = 0; palette_entry < 4; palette_entry++) {
370 int variance =
diff_colors(dithered_color, colors[palette_entry]);
371
372 if (variance < smallest_variance) {
373 smallest_variance = variance;
375 }
376 }
377
379 }
380
381 /*
382 * Encode a block using the 4-color opcode and palette. return number of
383 * blocks encoded (until we implement multi-block 4 color runs this will
384 * always be 1)
385 */
388 {
389 int x, y, idx;
390 uint8_t color4[4][3];
391 uint16_t rounded_max, rounded_min;
392
393 // round min and max wider
396
397 // put a and b colors
398 // encode 4 colors = first 16 bit color with MSB zeroed and...
399 put_bits(pb, 16, rounded_max & ~0x8000);
400 // ...second 16 bit color with MSB on.
401 put_bits(pb, 16, rounded_min | 0x8000);
402
404
405 for (y = 0; y < 4; y++) {
406 for (x = 0; x < 4; x++) {
409 }
411 }
412 return 1; // num blocks encoded
413 }
414
415 /*
416 * Copy a 4x4 block from the current frame buffer to the previous frame buffer.
417 */
419 uint16_t *dest_pixels,
421 {
422 for (int y = 0; y < 4; y++) {
423 memcpy(dest_pixels, src_pixels, 8);
426 }
427 }
428
429 /*
430 * update statistics for the specified block. If first_block,
431 * it initializes the statistics. Otherwise it updates the statistics IF THIS
432 * BLOCK IS SUITABLE TO CONTINUE A 1-COLOR RUN. That is, it checks whether
433 * the range of colors (since the routine was called first_block != 0) are
434 * all close enough intensities to be represented by a single color.
435
436 * The routine returns 0 if this block is too different to be part of
437 * the same run of 1-color blocks. The routine returns 1 if this
438 * block can be part of the same 1-color block run.
439
440 * If the routine returns 1, it also updates its arguments to include
441 * the statistics of this block. Otherwise, the stats are unchanged
442 * and don't include the current block.
443 */
445 uint8_t min_color[3], uint8_t max_color[3],
446 int *total_rgb, int *total_pixels,
447 uint8_t avg_color[3], int first_block)
448 {
449 int x, y;
450 int is_in_range;
451 int total_pixels_blk;
452 int threshold;
453
454 uint8_t min_color_blk[3], max_color_blk[3];
455 int total_rgb_blk[3];
456 uint8_t avg_color_blk[3];
457
458 if (first_block) {
459 min_color[0] = UINT8_MAX;
460 min_color[1] = UINT8_MAX;
461 min_color[2] = UINT8_MAX;
462 max_color[0] = 0;
463 max_color[1] = 0;
464 max_color[2] = 0;
465 total_rgb[0] = 0;
466 total_rgb[1] = 0;
467 total_rgb[2] = 0;
468 *total_pixels = 0;
469 threshold =
s->start_one_color_thresh;
470 } else {
471 threshold =
s->continue_one_color_thresh;
472 }
473
474 /*
475 The *_blk variables will include the current block.
476 Initialize them based on the blocks so far.
477 */
478 min_color_blk[0] = min_color[0];
479 min_color_blk[1] = min_color[1];
480 min_color_blk[2] = min_color[2];
481 max_color_blk[0] = max_color[0];
482 max_color_blk[1] = max_color[1];
483 max_color_blk[2] = max_color[2];
484 total_rgb_blk[0] = total_rgb[0];
485 total_rgb_blk[1] = total_rgb[1];
486 total_rgb_blk[2] = total_rgb[2];
488
489 /*
490 Update stats for this block's pixels
491 */
494 total_rgb_blk[0] +=
R(
block[x]);
495 total_rgb_blk[1] +=
G(
block[x]);
496 total_rgb_blk[2] +=
B(
block[x]);
497
498 min_color_blk[0] =
FFMIN(
R(
block[x]), min_color_blk[0]);
499 min_color_blk[1] =
FFMIN(
G(
block[x]), min_color_blk[1]);
500 min_color_blk[2] =
FFMIN(
B(
block[x]), min_color_blk[2]);
501
502 max_color_blk[0] =
FFMAX(
R(
block[x]), max_color_blk[0]);
503 max_color_blk[1] =
FFMAX(
G(
block[x]), max_color_blk[1]);
504 max_color_blk[2] =
FFMAX(
B(
block[x]), max_color_blk[2]);
505 }
507 }
508
509 /*
510 Calculate average color including current block.
511 */
512 avg_color_blk[0] = total_rgb_blk[0] / total_pixels_blk;
513 avg_color_blk[1] = total_rgb_blk[1] / total_pixels_blk;
514 avg_color_blk[2] = total_rgb_blk[2] / total_pixels_blk;
515
516 /*
517 Are all the pixels within threshold of the average color?
518 */
519 is_in_range = (max_color_blk[0] - avg_color_blk[0] <= threshold &&
520 max_color_blk[1] - avg_color_blk[1] <= threshold &&
521 max_color_blk[2] - avg_color_blk[2] <= threshold &&
522 avg_color_blk[0] - min_color_blk[0] <= threshold &&
523 avg_color_blk[1] - min_color_blk[1] <= threshold &&
524 avg_color_blk[2] - min_color_blk[2] <= threshold);
525
526 if (is_in_range) {
527 /*
528 Set the output variables to include this block.
529 */
530 min_color[0] = min_color_blk[0];
531 min_color[1] = min_color_blk[1];
532 min_color[2] = min_color_blk[2];
533 max_color[0] = max_color_blk[0];
534 max_color[1] = max_color_blk[1];
535 max_color[2] = max_color_blk[2];
536 total_rgb[0] = total_rgb_blk[0];
537 total_rgb[1] = total_rgb_blk[1];
538 total_rgb[2] = total_rgb_blk[2];
539 *total_pixels = total_pixels_blk;
540 avg_color[0] = avg_color_blk[0];
541 avg_color[1] = avg_color_blk[1];
542 avg_color[2] = avg_color_blk[2];
543 }
544
545 return is_in_range;
546 }
547
549 {
551 int block_counter = 0;
552 int n_blocks;
553 int total_blocks;
554 int prev_block_offset;
555 int block_offset = 0;
559 int tmp_min, tmp_max;
560 int total_rgb[3];
561 uint8_t avg_color[3];
562 int pixel_count;
563 uint8_t min_color[3], max_color[3];
564 double slope, y_intercept, correlation_coef;
565 uint16_t *src_pixels = (uint16_t *)pict->
data[0];
566 uint16_t *prev_pixels = (uint16_t *)
s->prev_frame->data[0];
567
568 /* Number of 4x4 blocks in frame. */
569 total_blocks = ((
s->frame_width + 3) / 4) * ((
s->frame_height + 3) / 4);
570
574
576
577 while (block_counter < total_blocks) {
578 // SKIP CHECK
579 // make sure we have a valid previous frame and we're not writing
580 // a key frame
581 if (!
s->first_frame) {
582 n_blocks = 0;
583 prev_block_offset = 0;
584
585 while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
586
588
589 // multi-block opcodes cannot span multiple rows.
590 // If we're starting a new row, break out and write the opcode
591 /* TODO: Should eventually use bi.row here to determine when a
592 row break occurs, but that is currently breaking the
593 quicktime player. This is probably due to a bug in the
594 way I'm calculating the current row.
595 */
596 if (prev_block_offset && block_offset - prev_block_offset > 12) {
597 break;
598 }
599
600 prev_block_offset = block_offset;
601
603 &src_pixels[block_offset], &bi,
s->skip_frame_thresh) != 0) {
604 // write out skipable blocks
605 if (n_blocks) {
606
607 // write skip opcode
608 put_bits(&
s->pb, 8, 0x80 | (n_blocks - 1));
609 block_counter += n_blocks;
610
611 goto post_skip;
612 }
613 break;
614 }
615
616 /*
617 * NOTE: we don't update skipped blocks in the previous frame buffer
618 * since skipped needs always to be compared against the first skipped
619 * block to avoid artifacts during gradual fade in/outs.
620 */
621
622 // update_block_in_prev_frame(&src_pixels[block_offset],
623 // &prev_pixels[block_offset], &bi, block_counter + n_blocks);
624
625 n_blocks++;
626 }
627
628 // we're either at the end of the frame or we've reached the maximum
629 // of 32 blocks in a run. Write out the run.
630 if (n_blocks) {
631 // write skip opcode
632 put_bits(&
s->pb, 8, 0x80 | (n_blocks - 1));
633 block_counter += n_blocks;
634
635 continue;
636 }
637
638 } else {
640 }
641 post_skip :
642
643 // ONE COLOR CHECK
645 min_color, max_color,
646 total_rgb, &pixel_count, avg_color, 1)) {
647 prev_block_offset = block_offset;
648
649 n_blocks = 1;
650
651 /* update this block in the previous frame buffer */
653 &prev_pixels[block_offset], &bi, block_counter + n_blocks);
654
655 // check for subsequent blocks with the same color
656 while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
658
659 // multi-block opcodes cannot span multiple rows.
660 // If we've hit end of a row, break out and write the opcode
661 if (block_offset - prev_block_offset > 12) {
662 break;
663 }
664
666 min_color, max_color,
667 total_rgb, &pixel_count, avg_color, 0)) {
668 break;
669 }
670
671 prev_block_offset = block_offset;
672
673 /* update this block in the previous frame buffer */
675 &prev_pixels[block_offset], &bi, block_counter + n_blocks);
676
677 n_blocks++;
678 }
679
680 // write one color opcode.
681 put_bits(&
s->pb, 8, 0xa0 | (n_blocks - 1));
682 // write color to encode.
684 // skip past the blocks we've just encoded.
685 block_counter += n_blocks;
686 } else { // FOUR COLOR CHECK
687 int err = 0;
688
689 // get max component diff for block
691
692 min_color[0] = 0;
693 max_color[0] = 0;
694 min_color[1] = 0;
695 max_color[1] = 0;
696 min_color[2] = 0;
697 max_color[2] = 0;
698
699 // run least squares against other two components
700 for (
i = 0;
i < 3;
i++) {
704 continue;
705 }
706
707 slope = y_intercept = correlation_coef = 0;
708
710 &slope, &y_intercept, &correlation_coef)) {
711 min_color[
i] =
GET_CHAN(src_pixels[block_offset],
i);
712 max_color[
i] =
GET_CHAN(src_pixels[block_offset],
i);
713 } else {
714 tmp_min = (
int)(0.5 +
min * slope + y_intercept);
715 tmp_max = (
int)(0.5 +
max * slope + y_intercept);
716
718 // clamp min and max color values
721
723 min,
max, tmp_min, tmp_max, chan,
i), err);
724
725 min_color[
i] = tmp_min;
726 max_color[
i] = tmp_max;
727 }
728 }
729
730 if (err >
s->sixteen_color_thresh) {
// DO SIXTEEN COLOR BLOCK
731 uint16_t *row_ptr;
732 int rgb555;
733
735
736 row_ptr = &src_pixels[block_offset];
737
738 for (int y = 0; y < 4; y++) {
739 for (int x = 0; x < 4; x++){
740 rgb555 = row_ptr[x] & ~0x8000;
741
743 }
745 }
746
747 block_counter++;
748 } else { // FOUR COLOR BLOCK
750 &
s->pb, &src_pixels[block_offset], &bi);
751 }
752
753 /* update this block in the previous frame buffer */
755 &prev_pixels[block_offset], &bi, block_counter);
756 }
757 }
758 }
759
761 {
763
764 s->frame_width = avctx->
width;
765 s->frame_height = avctx->
height;
766
770
771 return 0;
772 }
773
776 {
779 uint8_t *buf;
781
784
786
787 // skip 4 byte header, write it later once the size of the chunk is known
789
790 if (!
s->prev_frame->data[0]) {
792 s->prev_frame->format = pict->
format;
793 s->prev_frame->width = pict->
width;
794 s->prev_frame->height = pict->
height;
798 } else {
800 }
801
803
805
808
809 // write header opcode
810 buf[0] = 0xe1; // chunk opcode
811
812 // write chunk length
814
815 *got_packet = 1;
816
817 return 0;
818 }
819
821 {
823
825
826 return 0;
827 }
828
829 #define OFFSET(x) offsetof(RpzaContext, x)
830 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
837 };
838
844 };
845
859 };