1 /*
2 * AC-3 encoder float/fixed template
3 * Copyright (c) 2000 Fabrice Bellard
4 * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
5 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /**
25 * @file
26 * AC-3 encoder float/fixed template
27 */
28
29 #include <stdint.h>
30
34
39
40
42 {
43 int ch;
44
48
49 for (ch = 0; ch <
s->channels; ch++) {
51 sizeof(**
s->planar_samples))))
53 }
54 return 0;
55 }
56
57
58 /*
59 * Copy input samples.
60 * Channels are reordered from FFmpeg's default order to AC-3 order.
61 */
63 {
64 int ch;
65
66 /* copy and remap input samples */
67 for (ch = 0; ch <
s->channels; ch++) {
68 /* copy last 256 samples of previous frame to the start of the current frame */
69 memcpy(&
s->planar_samples[ch][0], &
s->planar_samples[ch][
AC3_BLOCK_SIZE *
s->num_blocks],
71
72 /* copy new samples for current frame */
76 }
77 }
78
79
80 /*
81 * Apply the MDCT to input samples to generate frequency coefficients.
82 * This applies the KBD window and normalizes the input to reduce precision
83 * loss due to fixed-point calculations.
84 */
86 {
88
89 for (ch = 0; ch <
s->channels; ch++) {
93
94 s->fdsp->vector_fmul(
s->windowed_samples, input_samples,
99
100 s->mdct.mdct_calc(&
s->mdct,
block->mdct_coef[ch+1],
101 s->windowed_samples);
102 }
103 }
104 }
105
106
107 /*
108 * Calculate coupling channel and coupling coordinates.
109 */
111 {
113 #if AC3ENC_FLOAT
115 #else
117 #endif
120 int cpl_start, num_cpl_coefs;
121
123 #if AC3ENC_FLOAT
124 memset(fixed_cpl_coords, 0,
AC3_MAX_BLOCKS *
sizeof(*cpl_coords));
125 #endif
126
127 /* align start to 16-byte boundary. align length to multiple of 32.
128 note: coupling start bin % 4 will always be 1 */
129 cpl_start =
s->start_freq[
CPL_CH] - 1;
130 num_cpl_coefs =
FFALIGN(
s->num_cpl_subbands * 12 + 1, 32);
131 cpl_start =
FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
132
133 /* calculate coupling channel from fbw channels */
137 if (!
block->cpl_in_use)
138 continue;
139 memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
140 for (ch = 1; ch <=
s->fbw_channels; ch++) {
142 if (!
block->channel_in_cpl[ch])
143 continue;
144 for (
i = 0;
i < num_cpl_coefs;
i++)
145 cpl_coef[
i] += ch_coef[
i];
146 }
147
148 /* coefficients must be clipped in order to be encoded */
150 }
151
152 /* calculate energy in each band in coupling channel and each fbw channel */
153 /* TODO: possibly use SIMD to speed up energy calculation */
154 bnd = 0;
157 int band_size =
s->cpl_band_sizes[bnd];
158 for (ch =
CPL_CH; ch <=
s->fbw_channels; ch++) {
162 continue;
163 for (j = 0; j < band_size; j++) {
166 }
167 }
168 }
170 bnd++;
171 }
172
173 /* calculate coupling coordinates for all blocks for all channels */
176 if (!
block->cpl_in_use)
177 continue;
178 for (ch = 1; ch <=
s->fbw_channels; ch++) {
179 if (!
block->channel_in_cpl[ch])
180 continue;
181 for (bnd = 0; bnd <
s->num_cpl_bands; bnd++) {
184 }
185 }
186 }
187
188 /* determine which blocks to send new coupling coordinates for */
192
193 memset(
block->new_cpl_coords, 0,
sizeof(
block->new_cpl_coords));
194
195 if (
block->cpl_in_use) {
196 /* send new coordinates if this is the first block, if previous
197 * block did not use coupling but this block does, the channels
198 * using coupling has changed from the previous block, or the
199 * coordinate difference from the last block for any channel is
200 * greater than a threshold value. */
202 for (ch = 1; ch <=
s->fbw_channels; ch++)
203 block->new_cpl_coords[ch] = 1;
204 } else {
205 for (ch = 1; ch <=
s->fbw_channels; ch++) {
206 if (!
block->channel_in_cpl[ch])
207 continue;
209 block->new_cpl_coords[ch] = 1;
210 } else {
212 for (bnd = 0; bnd <
s->num_cpl_bands; bnd++) {
213 coord_diff +=
FFABS(cpl_coords[
blk-1][ch][bnd] -
214 cpl_coords[
blk ][ch][bnd]);
215 }
216 coord_diff /=
s->num_cpl_bands;
218 block->new_cpl_coords[ch] = 1;
219 }
220 }
221 }
222 }
223 }
224
225 /* calculate final coupling coordinates, taking into account reusing of
226 coordinates in successive blocks */
227 for (bnd = 0; bnd <
s->num_cpl_bands; bnd++) {
232
233 if (!
block->cpl_in_use) {
235 continue;
236 }
237
238 for (ch = 1; ch <=
s->fbw_channels; ch++) {
240 if (!
block->channel_in_cpl[ch])
241 continue;
243 energy_ch = energy[
blk][ch][bnd];
245 while (blk1 < s->
num_blocks && !
s->blocks[blk1].new_cpl_coords[ch]) {
246 if (
s->blocks[blk1].cpl_in_use) {
247 energy_cpl += energy[blk1][
CPL_CH][bnd];
248 energy_ch += energy[blk1][ch][bnd];
249 }
250 blk1++;
251 }
253 }
255 }
256 }
257
258 /* calculate exponents/mantissas for coupling coordinates */
261 if (!
block->cpl_in_use)
262 continue;
263
264 #if AC3ENC_FLOAT
265 s->ac3dsp.float_to_fixed24(fixed_cpl_coords[
blk][1],
267 s->fbw_channels * 16);
268 #endif
269 s->ac3dsp.extract_exponents(
block->cpl_coord_exp[1],
270 fixed_cpl_coords[
blk][1],
271 s->fbw_channels * 16);
272
273 for (ch = 1; ch <=
s->fbw_channels; ch++) {
274 int bnd, min_exp, max_exp, master_exp;
275
276 if (!
block->new_cpl_coords[ch])
277 continue;
278
279 /* determine master exponent */
280 min_exp = max_exp =
block->cpl_coord_exp[ch][0];
281 for (bnd = 1; bnd <
s->num_cpl_bands; bnd++) {
282 int exp =
block->cpl_coord_exp[ch][bnd];
285 }
286 master_exp = ((max_exp - 15) + 2) / 3;
287 master_exp =
FFMAX(master_exp, 0);
288 while (min_exp < master_exp * 3)
289 master_exp--;
290 for (bnd = 0; bnd <
s->num_cpl_bands; bnd++) {
292 master_exp * 3, 0, 15);
293 }
294 block->cpl_master_exp[ch] = master_exp;
295
296 /* quantize mantissas */
297 for (bnd = 0; bnd <
s->num_cpl_bands; bnd++) {
298 int cpl_exp =
block->cpl_coord_exp[ch][bnd];
299 int cpl_mant = (fixed_cpl_coords[
blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
300 if (cpl_exp == 15)
301 cpl_mant >>= 1;
302 else
303 cpl_mant -= 16;
304
305 block->cpl_coord_mant[ch][bnd] = cpl_mant;
306 }
307 }
308 }
309
312 }
313
314
315 /*
316 * Determine rematrixing flags for each block and band.
317 */
319 {
323
325 return;
326
329 block->new_rematrixing_strategy = !
blk;
330
331 block->num_rematrixing_bands = 4;
332 if (
block->cpl_in_use) {
333 block->num_rematrixing_bands -= (
s->start_freq[
CPL_CH] <= 61);
334 block->num_rematrixing_bands -= (
s->start_freq[
CPL_CH] == 37);
336 block->new_rematrixing_strategy = 1;
337 }
339
340 if (!
s->rematrixing_enabled) {
342 continue;
343 }
344
345 for (bnd = 0; bnd <
block->num_rematrixing_bands; bnd++) {
346 /* calculate sum of squared coeffs for one band in one block */
351 block->mdct_coef[2] + start, end - start);
352
353 /* compare sums to determine if rematrixing will be used for this band */
354 if (
FFMIN(sum[2], sum[3]) <
FFMIN(sum[0], sum[1]))
355 block->rematrixing_flags[bnd] = 1;
356 else
357 block->rematrixing_flags[bnd] = 0;
358
359 /* determine if new rematrixing flags will be sent */
362 block->new_rematrixing_strategy = 1;
363 }
364 }
366 }
367 }
368
369
372 {
375
376 if (
s->options.allow_per_frame_metadata) {
380 }
381
384
386
388
389 s->cpl_on =
s->cpl_enabled;
391
394
396
397 #if AC3ENC_FLOAT
399 #endif
400
402 }