1 /*
2 * AAC coefficients encoder
3 * Copyright (C) 2008-2009 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * AAC coefficients encoder
25 */
26
27 /***********************************
28 * TODOs:
29 * speedup quantizer selection
30 * add sane pulse detection
31 ***********************************/
32
33 #include "libavutil/libm.h" // brought forward to work around cygwin header breakage
34
36
47
52
54
55 /* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
56 * beyond which no PNS is used (since the SFBs contain tone rather than noise) */
57 #define NOISE_SPREAD_THRESHOLD 0.9f
58
59 /* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
60 * replace low energy non zero bands */
61 #define NOISE_LAMBDA_REPLACE 1.948f
62
64
65 /**
66 * structure used in optimal codebook search
67 */
69 int prev_idx;
///< pointer to the previous path point
73
74 /**
75 * Encode band info for single window group bands.
76 */
78 int win,
int group_len,
const float lambda)
79 {
82 int i, j;
85 const int run_esc = (1 <<
run_bits) - 1;
87 int stackrun[120], stackcb[120], stack_len;
89 int next_mincb = 0;
90
92 start = win*128;
97 }
98 for (swb = 0; swb < max_sfb; swb++) {
100 if (sce->
zeroes[win*16 + swb]) {
105 }
106 } else {
107 float minrd = next_minrd;
108 int mincb = next_mincb;
110 next_mincb = 0;
112 float cost_stay_here, cost_get_here;
113 float rd = 0.0f;
119 continue;
120 }
121 for (w = 0; w < group_len; w++) {
124 &s->
scoefs[start + w*128], size,
127 }
128 cost_stay_here = path[swb][
cb].
cost + rd;
129 cost_get_here = minrd + rd + run_bits + 4;
133 if (cost_get_here < cost_stay_here) {
135 path[swb+1][
cb].
cost = cost_get_here;
136 path[swb+1][
cb].
run = 1;
137 } else {
139 path[swb+1][
cb].
cost = cost_stay_here;
141 }
142 if (path[swb+1][cb].cost < next_minrd) {
143 next_minrd = path[swb+1][
cb].
cost;
145 }
146 }
147 }
149 }
150
151 //convert resulting path from backward-linked list
152 stack_len = 0;
153 idx = 0;
155 if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
157 ppos = max_sfb;
158 while (ppos > 0) {
160 cb = idx;
161 stackrun[stack_len] = path[ppos][
cb].
run;
162 stackcb [stack_len] =
cb;
164 ppos -= path[ppos][
cb].
run;
165 stack_len++;
166 }
167 //perform actual band info encoding
168 start = 0;
169 for (i = stack_len - 1; i >= 0; i--) {
172 count = stackrun[i];
173 memset(sce->
zeroes + win*16 + start, !cb, count);
174 //XXX: memset when band_type is also uint8_t
175 for (j = 0; j <
count; j++) {
177 start++;
178 }
179 while (count >= run_esc) {
181 count -= run_esc;
182 }
184 }
185 }
186
187
192
193 #define TRELLIS_STAGES 121
194 #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
195
197 {
199 int prevscaler_n = -255, prevscaler_i = 0;
201
205 continue;
208 bands++;
211 if (prevscaler_n == -255)
212 prevscaler_n = sce->
sf_idx[w*16+
g];
213 bands++;
214 }
215 }
216 }
217
218 if (!bands)
219 return;
220
221 /* Clip the scalefactor indices */
225 continue;
230 }
231 }
232 }
233 }
234
237 const float lambda)
238 {
240 int i, j;
241 int idx;
244 int minq;
245 float mincost;
246 float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
247 int q0,
q1, qcnt = 0;
248
249 for (i = 0; i < 1024; i++) {
250 float t = fabsf(sce->
coeffs[i]);
251 if (t > 0.0f) {
254 qnrgf += t*t;
255 qcnt++;
256 }
257 }
258
259 if (!qcnt) {
262 return;
263 }
264
265 //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
267 //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
269 if (q1 - q0 > 60) {
272 //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
274 q1 = qnrg + 30;
275 q0 = qnrg - 30;
276 if (q0 < q0low) {
278 q0 = q0low;
279 } else if (q1 > q1high) {
280 q0 -= q1 - q1high;
281 q1 = q1high;
282 }
283 }
284 // q0 == q1 isn't really a legal situation
285 if (q0 == q1) {
286 // the following is indirect but guarantees q1 != q0 && q1 near q0
289 }
290
292 paths[0][i].
cost = 0.0f;
293 paths[0][i].
prev = -1;
294 }
298 paths[j][i].
prev = -2;
299 }
300 }
301 idx = 1;
304 start = w*128;
307 float qmin, qmax;
308 int nz = 0;
309
310 bandaddr[idx] = w * 16 +
g;
311 qmin = INT_MAX;
312 qmax = 0.0f;
316 sce->
zeroes[(w+w2)*16+g] = 1;
317 continue;
318 }
319 sce->
zeroes[(w+w2)*16+g] = 0;
320 nz = 1;
322 float t = fabsf(coefs[w2*128+i]);
323 if (t > 0.0f)
324 qmin =
FFMIN(qmin, t);
325 qmax =
FFMAX(qmax, t);
326 }
327 }
328 if (nz) {
329 int minscale, maxscale;
331 float maxval;
332 //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
334 //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
336 minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
337 maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
338 if (minscale == maxscale) {
339 maxscale = av_clip(minscale+1, 1, TRELLIS_STATES);
340 minscale = av_clip(maxscale-1, 0, TRELLIS_STATES - 1);
341 }
343 for (q = minscale; q < maxscale; q++) {
344 float dist = 0;
350 }
351 minrd =
FFMIN(minrd, dist);
352
353 for (i = 0; i < q1 -
q0; i++) {
354 float cost;
355 cost = paths[idx - 1][i].
cost + dist
357 if (cost < paths[idx][q].cost) {
358 paths[idx][q].
cost = cost;
359 paths[idx][q].
prev = i;
360 }
361 }
362 }
363 } else {
364 for (q = 0; q < q1 -
q0; q++) {
365 paths[idx][q].
cost = paths[idx - 1][q].
cost + 1;
366 paths[idx][q].
prev = q;
367 }
368 }
371 idx++;
372 }
373 }
374 idx--;
375 mincost = paths[idx][0].
cost;
376 minq = 0;
378 if (paths[idx][i].cost < mincost) {
379 mincost = paths[idx][i].
cost;
380 minq = i;
381 }
382 }
383 while (idx) {
384 sce->
sf_idx[bandaddr[idx]] = minq +
q0;
385 minq =
FFMAX(paths[idx][minq].prev, 0);
386 idx--;
387 }
388 //set the same quantizers inside window groups
393 }
394
397 const float lambda)
398 {
401 float dists[128] = { 0 }, uplims[128] = { 0 };
402 float maxvals[128];
403 int fflag, minscaler;
404 int its = 0;
405 int allz = 0;
407
408 // for values above this the decoder might end up in an endless loop
409 // due to always having more bits than what can be encoded.
410 destbits =
FFMIN(destbits, 5800);
411 //some heuristic to determine initial quantizers will reduce search time
412 //determine zero bands and upper limits
414 start = 0;
416 int nz = 0;
417 float uplim = 0.0f, energy = 0.0f;
423 sce->
zeroes[(w+w2)*16+g] = 1;
424 continue;
425 }
426 nz = 1;
427 }
428 uplims[w*16+
g] = uplim *512;
431 if (nz)
432 minthr =
FFMIN(minthr, uplim);
433 allz |= nz;
435 }
436 }
439 if (sce->
zeroes[w*16+g]) {
441 continue;
442 }
444 }
445 }
446
447 if (!allz)
448 return;
451
453 start = w*128;
458 }
459 }
460
461 //perform two-loop search
462 //outer loop - improve quality
463 do {
464 int tbits, qstep;
465 minscaler = sce->
sf_idx[0];
466 //inner loop - quantize spectrum to fit into given number of bits
467 qstep = its ? 1 : 32;
468 do {
469 int prev = -1;
470 tbits = 0;
472 start = w*128;
476 int bits = 0;
478 float dist = 0.0f;
479
480 if (sce->
zeroes[w*16+g] || sce->
sf_idx[w*16+g] >= 218) {
482 continue;
483 }
489 coefs + w2*128,
490 scaled + w2*128,
496 }
497 dists[w*16+
g] = dist - bits;
498 if (prev != -1) {
500 }
501 tbits += bits;
504 }
505 }
506 if (tbits > destbits) {
507 for (i = 0; i < 128; i++)
508 if (sce->
sf_idx[i] < 218 - qstep)
510 } else {
511 for (i = 0; i < 128; i++)
512 if (sce->
sf_idx[i] > 60 - qstep)
514 }
515 qstep >>= 1;
516 if (!qstep && tbits > destbits*1.02 && sce->
sf_idx[0] < 217)
517 qstep = 1;
518 } while (qstep);
519
520 fflag = 0;
522
525 int prevsc = sce->
sf_idx[w*16+
g];
526 if (dists[w*16+g] > uplims[w*16+g] && sce->
sf_idx[w*16+g] > 60) {
529 else //Try to make sure there is some energy in every band
531 }
534 if (sce->
sf_idx[w*16+g] != prevsc)
535 fflag = 1;
537 }
538 }
539 its++;
540 } while (fflag && its < 10);
541 }
542
544 {
548 int bandwidth, cutoff;
549 float *PNS = &s->
scoefs[0*128], *PNS34 = &s->
scoefs[1*128];
550 float *NOR34 = &s->
scoefs[3*128];
552 const float lambda = s->
lambda;
553 const float freq_mult = avctx->
sample_rate*0.5f/wlen;
556 const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f);
557 const float pns_transient_energy_r =
FFMIN(0.7f, lambda / 140.f);
558
561 * (lambda / 120.f);
562
563 /** Keep this in sync with twoloop's cutoff selection */
564 float rate_bandwidth_multiplier = 1.5f;
565 int prev = -1000, prev_sf = -1;
567 ? (refbits * rate_bandwidth_multiplier * avctx->
sample_rate / 1024)
569
570 frame_bit_rate *= 1.15f;
571
573 bandwidth = avctx->
cutoff;
574 } else {
576 }
577
578 cutoff = bandwidth * 2 * wlen / avctx->
sample_rate;
579
583 int wstart = w*128;
585 int noise_sfi;
586 float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
587 float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
588 float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
589 float min_energy = -1.0f, max_energy = 0.0f;
591 const float freq = (start-wstart)*freq_mult;
596 continue;
597 }
600 sfb_energy += band->
energy;
603 if (!w2) {
604 min_energy = max_energy = band->
energy;
605 } else {
608 }
609 }
610
611 /* Ramps down at ~8000Hz and loosens the dist threshold */
612 dist_thresh = av_clipf(2.5f*
NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias;
613
614 /* PNS is acceptable when all of these are true:
615 * 1. high spread energy (noise-like band)
616 * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
617 * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
618 *
619 * At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important)
620 */
622 ((sce->
zeroes[w*16+g] || !sce->
band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.0f/freq_boost)) || spread < spread_threshold ||
623 (!sce->
zeroes[w*16+g] && sce->
band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) ||
624 min_energy < pns_transient_energy_r * max_energy ) {
628 continue;
629 }
630
631 pns_tgt_energy = sfb_energy*
FFMIN(1.0f, spread*spread);
632 noise_sfi = av_clip(
roundf(
log2f(pns_tgt_energy)*2), -100, 155);
/* Quantize */
634 if (prev != -1000) {
639 continue;
640 }
641 }
643 float band_energy, scale, pns_senergy;
649 }
651 scale = noise_amp/sqrtf(band_energy);
654 pns_energy += pns_senergy;
658 NOR34,
663 /* Estimate rd on average as 5 bits for SF, 4 for the CB, plus spread energy * lambda/thr */
665 }
667 dist2 += 5;
668 } else {
669 dist2 += 9;
670 }
671 energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */
672 sce->
pns_ener[w*16+
g] = energy_ratio*pns_tgt_energy;
673 if (sce->
zeroes[w*16+g] || !sce->
band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
676 prev = noise_sfi;
677 } else {
680 }
681 }
682 }
683 }
684
686 {
690 int bandwidth, cutoff;
691 const float lambda = s->
lambda;
692 const float freq_mult = avctx->
sample_rate*0.5f/wlen;
694 const float pns_transient_energy_r =
FFMIN(0.7f, lambda / 140.f);
695
698 * (lambda / 120.f);
699
700 /** Keep this in sync with twoloop's cutoff selection */
701 float rate_bandwidth_multiplier = 1.5f;
703 ? (refbits * rate_bandwidth_multiplier * avctx->
sample_rate / 1024)
705
706 frame_bit_rate *= 1.15f;
707
709 bandwidth = avctx->
cutoff;
710 } else {
712 }
713
714 cutoff = bandwidth * 2 * wlen / avctx->
sample_rate;
715
719 float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
720 float min_energy = -1.0f, max_energy = 0.0f;
722 const float freq = start*freq_mult;
724 if (freq < NOISE_LOW_LIMIT || start >= cutoff) {
726 continue;
727 }
730 sfb_energy += band->
energy;
733 if (!w2) {
734 min_energy = max_energy = band->
energy;
735 } else {
738 }
739 }
740
741 /* PNS is acceptable when all of these are true:
742 * 1. high spread energy (noise-like band)
743 * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
744 * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
745 */
747 if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) {
749 } else {
751 }
752 }
753 }
754 }
755
757 {
758 int start = 0, i,
w, w2,
g, sid_sf_boost, prev_mid, prev_side;
759 uint8_t nextband0[128], nextband1[128];
761 float *L34 = s->
scoefs + 128*2, *R34 = s->
scoefs + 128*3;
762 float *M34 = s->
scoefs + 128*4, *S34 = s->
scoefs + 128*5;
763 const float lambda = s->
lambda;
764 const float mslambda =
FFMIN(1.0f, lambda / 120.f);
768 return;
769
770 /** Scout out next nonzero bands */
773
774 prev_mid = sce0->
sf_idx[0];
775 prev_side = sce1->
sf_idx[0];
777 start = 0;
783 float Mmax = 0.0f, Smax = 0.0f;
784
785 /* Must compute mid/side SF and book for the whole window group */
788 M[i] = (sce0->
coeffs[start+(w+w2)*128+i]
789 + sce1->
coeffs[start+(w+w2)*128+i]) * 0.5;
791 - sce1->
coeffs[start+(w+w2)*128+i];
792 }
796 Mmax =
FFMAX(Mmax, M34[i]);
797 Smax =
FFMAX(Smax, S34[i]);
798 }
799 }
800
801 for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
802 float dist1 = 0.0f, dist2 = 0.0f;
804 int minidx;
805 int mididx, sididx;
806 int midcb, sidcb;
807
814 /* scalefactor range violation, bad stuff, will decrease quality unacceptably */
815 continue;
816 }
817
820
821 /* No CB can be zero */
822 midcb =
FFMAX(1,midcb);
823 sidcb =
FFMAX(1,sidcb);
824
829 int b1,b2,b3,b4;
831 M[i] = (sce0->
coeffs[start+(w+w2)*128+i]
832 + sce1->
coeffs[start+(w+w2)*128+i]) * 0.5;
834 - sce1->
coeffs[start+(w+w2)*128+i];
835 }
836
842 L34,
848 R34,
854 M34,
856 mididx,
857 midcb,
860 S34,
862 sididx,
863 sidcb,
865 B0 += b1+b2;
867 dist1 -= b1+b2;
868 dist2 -= b3+b4;
869 }
878 /* ms_mask unneeded, and it confuses some decoders */
880 }
881 break;
882 }
else if (
B1 > B0) {
883 /* More boost won't fix this */
884 break;
885 }
886 }
887 }
889 prev_mid = sce0->
sf_idx[w*16+
g];
891 prev_side = sce1->
sf_idx[w*16+
g];
893 }
894 }
895 }
896
919 },
941 },
963 },
964 };
AAC encoder long term prediction extension.
static const uint8_t *const run_value_bits[2]
void ff_quantize_band_cost_cache_init(struct AACEncContext *s)
Band types following are encoded differently from others.
float pns_ener[128]
Noise energy values (used by encoder)
void ff_aac_encode_ltp_info(AACEncContext *s, SingleChannelElement *sce, int common_window)
Encode LTP data.
AAC encoder trellis codebook selector.
static const uint8_t aac_cb_out_map[CB_TOT_ALL]
Map to convert values from BandCodingPath index to a codebook index.
void ff_aac_ltp_insert_new_frame(AACEncContext *s)
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce, int win, int group_len, const float lambda)
Encode band info for single window group bands.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
int64_t bit_rate
the average bitrate
#define SCALE_DIFF_ZERO
codebook index corresponding to zero scalefactor indices difference
#define AAC_CUTOFF_FROM_BITRATE(bit_rate, channels, sample_rate)
static float win(SuperEqualizerContext *s, float n, int N)
FFPsyBand psy_bands[PSY_MAX_BANDS]
channel bands information
void ff_aac_encode_tns_info(AACEncContext *s, SingleChannelElement *sce)
Encode TNS data.
#define SCALE_MAX_POS
scalefactor index maximum value
#define SCALE_MAX_DIFF
maximum scalefactor difference allowed by standard
float(* scalarproduct_float)(const float *v1, const float *v2, int len)
Calculate the scalar product of two vectors of floats.
static av_always_inline float bval2bmax(float b)
approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f)))
static int ff_sfdelta_can_remove_band(const SingleChannelElement *sce, const uint8_t *nextband, int prev_sf, int band)
int common_window
Set if channels share a common 'IndividualChannelStream' in bitstream.
int prev_idx
pointer to the previous path point
uint8_t ms_mask[128]
Set if mid/side stereo is used for each scalefactor window band.
#define NOISE_LAMBDA_REPLACE
static const uint8_t q1[256]
static uint8_t coef2maxsf(float coef)
Return the maximum scalefactor where the quantized coef is not zero.
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda)
static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
Spectral data are scaled white noise not coded in the bitstream.
static av_always_inline int lcg_random(unsigned previous_val)
linear congruential pseudorandom number generator
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, int win, int group_len, const float lambda)
const uint16_t * swb_offset
table of offsets to the lowest spectral coefficient of a scalefactor band, sfb, for a particular wind...
static int ff_sfdelta_can_replace(const SingleChannelElement *sce, const uint8_t *nextband, int prev_sf, int new_sf, int band)
static double cb(void *priv, double x, double y)
SingleChannelElement ch[2]
const uint8_t ff_aac_scalefactor_bits[121]
AAC encoder main-type prediction.
const AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB]
static const uint8_t run_bits[7][16]
void ff_aac_encode_main_pred(AACEncContext *s, SingleChannelElement *sce)
Encoder predictors data.
Scalefactor data are intensity stereo positions (in phase).
single band psychoacoustic information
void ff_aac_update_ltp(AACEncContext *s, SingleChannelElement *sce)
Process LTP parameters.
static const uint8_t aac_cb_in_map[CB_TOT_ALL+1]
Inverse map to convert from codebooks to BandCodingPath indices.
void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce)
float is_ener[128]
Intensity stereo pos (used by encoder)
void ff_aac_apply_tns(AACEncContext *s, SingleChannelElement *sce)
int flags
AV_CODEC_FLAG_*.
uint8_t max_sfb
number of scalefactor bands per group
int num_swb
number of scalefactor window bands
static const uint8_t q0[256]
void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce)
float ff_aac_pow2sf_tab[428]
#define SCALE_DIV_512
scalefactor difference that corresponds to scale difference in 512 times
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda)
void(* abs_pow34)(float *out, const float *in, const int size)
enum BandType band_alt[128]
alternative band type (used by encoder)
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
#define AV_CODEC_FLAG_QSCALE
Use fixed qscale.
void ff_aac_adjust_common_pred(AACEncContext *s, ChannelElement *cpe)
static uint8_t coef2minsf(float coef)
Return the minimum scalefactor where the quantized coef does not clip.
int cur_channel
current channel for coder context
void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce)
static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
uint8_t can_pns[128]
band is allowed to PNS (informative)
static void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
void(* vector_fmul_scalar)(float *dst, const float *src, float mul, int len)
Multiply a vector of floats by a scalar float.
AAC encoder Intensity Stereo.
AAC definitions and structures.
AAC encoder twoloop coder.
void ff_aac_search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElement *cpe)
Libavcodec external API header.
static int find_min_book(float maxval, int sf)
int sample_rate
samples per second
main external API structure.
static const float bands[]
IndividualChannelStream ics
structure used in optimal codebook search
Replacements for frequently missing libm functions.
const uint8_t * swb_sizes
table of scalefactor band sizes for a particular window
#define NOISE_SPREAD_THRESHOLD
static av_always_inline av_const float roundf(float x)
#define CB_TOT_ALL
Total number of codebooks, including special ones.
uint8_t zeroes[128]
band is not coded (used by encoder)
int sf_idx[128]
scalefactor indices (used by encoder)
INTFLOAT coeffs[1024]
coefficients for IMDCT, maybe processed
Scalefactor data are intensity stereo positions (out of phase).
#define SCALE_ONE_POS
scalefactor index that corresponds to scale=1.0
static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda)
two-loop quantizers search taken from ISO 13818-7 Appendix C
Single Channel Element - used for both SCE and LFE elements.
channel element - generic struct for SCE/CPE/CCE/LFE
int cutoff
Audio cutoff bandwidth (0 means "automatic")
int channels
number of audio channels
FFPsyChannel * ch
single channel information
enum BandType band_type[128]
band types
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, const float *in, float *out, int size, int scale_idx, int cb, const float lambda, int rtz)
AAC encoder temporal noise shaping.
#define POW_SF2_ZERO
ff_aac_pow2sf_tab index corresponding to pow(2, 0);
static float find_max_val(int group_len, int swb_size, const float *scaled)
void ff_aac_adjust_common_ltp(AACEncContext *s, ChannelElement *cpe)
void ff_aac_search_for_ltp(AACEncContext *s, SingleChannelElement *sce, int common_window)
Mark LTP sfb's.
static float quantize_band_cost(struct AACEncContext *s, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, int *bits, float *energy, int rtz)
static float quantize_band_cost_cached(struct AACEncContext *s, int w, int g, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, int *bits, float *energy, int rtz)
uint8_t is_mask[128]
Set if intensity stereo is used (used by encoder)
float scoefs[1024]
scaled coefficients
static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
#define NOISE_LOW_LIMIT
This file contains a template for the twoloop coder function.