Weierstrass–Enneper parameterization
In mathematics, the Weierstrass–Enneper parameterization of minimal surfaces is a classical piece of differential geometry.
Alfred Enneper and Karl Weierstrass studied minimal surfaces as far back as 1863.
Let {\displaystyle f} and {\displaystyle g} be functions on either the entire complex plane or the unit disk, where {\displaystyle g} is meromorphic and {\displaystyle f} is analytic, such that wherever {\displaystyle g} has a pole of order {\displaystyle m}, {\displaystyle f} has a zero of order {\displaystyle 2m} (or equivalently, such that the product {\displaystyle fg^{2}} is holomorphic), and let {\displaystyle c_{1},c_{2},c_{3}} be constants. Then the surface with coordinates {\displaystyle (x_{1},x_{2},x_{3})} is minimal, where the {\displaystyle x_{k}} are defined using the real part of a complex integral, as follows: {\displaystyle {\begin{aligned}x_{k}(\zeta )&{}=\mathrm {Re} \left\{\int _{0}^{\zeta }\varphi _{k}(z),円dz\right\}+c_{k},\qquad k=1,2,3\\\varphi _{1}&{}=f(1-g^{2})/2\\\varphi _{2}&{}=if(1+g^{2})/2\\\varphi _{3}&{}=fg\end{aligned}}}
The converse is also true: every nonplanar minimal surface defined over a simply connected domain can be given a parametrization of this type.[1]
For example, Enneper's surface has f(z) = 1, g(z) = zm.
Parametric surface of complex variables
[edit ]The Weierstrass-Enneper model defines a minimal surface {\displaystyle X} ({\displaystyle \mathbb {R} ^{3}}) on a complex plane ({\displaystyle \mathbb {C} }). Let {\displaystyle \omega =u+vi} (the complex plane as the {\displaystyle uv} space), the Jacobian matrix of the surface can be written as a column of complex entries: {\displaystyle \mathbf {J} ={\begin{bmatrix}\left(1-g^{2}(\omega )\right)f(\omega )\\i\left(1+g^{2}(\omega )\right)f(\omega )\2円g(\omega )f(\omega )\end{bmatrix}}} where {\displaystyle f(\omega )} and {\displaystyle g(\omega )} are holomorphic functions of {\displaystyle \omega }.
The Jacobian {\displaystyle \mathbf {J} } represents the two orthogonal tangent vectors of the surface:[2] {\displaystyle \mathbf {X_{u}} ={\begin{bmatrix}\operatorname {Re} \mathbf {J} _{1}\\\operatorname {Re} \mathbf {J} _{2}\\\operatorname {Re} \mathbf {J} _{3}\end{bmatrix}}\;\;\;\;\mathbf {X_{v}} ={\begin{bmatrix}-\operatorname {Im} \mathbf {J} _{1}\\-\operatorname {Im} \mathbf {J} _{2}\\-\operatorname {Im} \mathbf {J} _{3}\end{bmatrix}}}
The surface normal is given by {\displaystyle \mathbf {\hat {n}} ={\frac {\mathbf {X_{u}} \times \mathbf {X_{v}} }{|\mathbf {X_{u}} \times \mathbf {X_{v}} |}}={\frac {1}{|g|^{2}+1}}{\begin{bmatrix}2\operatorname {Re} g\2円\operatorname {Im} g\\|g|^{2}-1\end{bmatrix}}}
The Jacobian {\displaystyle \mathbf {J} } leads to a number of important properties: {\displaystyle \mathbf {X_{u}} \cdot \mathbf {X_{v}} =0}, {\displaystyle \mathbf {X_{u}} ^{2}=\operatorname {Re} (\mathbf {J} ^{2})}, {\displaystyle \mathbf {X_{v}} ^{2}=\operatorname {Im} (\mathbf {J} ^{2})}, {\displaystyle \mathbf {X_{uu}} +\mathbf {X_{vv}} =0}. The proofs can be found in Sharma's essay: The Weierstrass representation always gives a minimal surface.[3] The derivatives can be used to construct the first fundamental form matrix: {\displaystyle {\begin{bmatrix}\mathbf {X_{u}} \cdot \mathbf {X_{u}} &\;\;\mathbf {X_{u}} \cdot \mathbf {X_{v}} \\\mathbf {X_{v}} \cdot \mathbf {X_{u}} &\;\;\mathbf {X_{v}} \cdot \mathbf {X_{v}} \end{bmatrix}}={\begin{bmatrix}1&0\0円&1\end{bmatrix}}}
and the second fundamental form matrix {\displaystyle {\begin{bmatrix}\mathbf {X_{uu}} \cdot \mathbf {\hat {n}} &\;\;\mathbf {X_{uv}} \cdot \mathbf {\hat {n}} \\\mathbf {X_{vu}} \cdot \mathbf {\hat {n}} &\;\;\mathbf {X_{vv}} \cdot \mathbf {\hat {n}} \end{bmatrix}}}
Finally, a point {\displaystyle \omega _{t}} on the complex plane maps to a point {\displaystyle \mathbf {X} } on the minimal surface in {\displaystyle \mathbb {R} ^{3}} by {\displaystyle \mathbf {X} ={\begin{bmatrix}\operatorname {Re} \int _{\omega _{0}}^{\omega _{t}}\mathbf {J} _{1}d\omega \\\operatorname {Re} \int _{\omega _{0}}^{\omega _{t}}\mathbf {J} _{2}d\omega \\\operatorname {Re} \int _{\omega _{0}}^{\omega _{t}}\mathbf {J} _{3}d\omega \end{bmatrix}}} where {\displaystyle \omega _{0}=0} for all minimal surfaces throughout this paper except for Costa's minimal surface where {\displaystyle \omega _{0}=(1+i)/2}.
Embedded minimal surfaces and examples
[edit ]The classical examples of embedded complete minimal surfaces in {\displaystyle \mathbb {R} ^{3}} with finite topology include the plane, the catenoid, the helicoid, and the Costa's minimal surface. Costa's surface involves Weierstrass's elliptic function {\displaystyle \wp }:[4] {\displaystyle g(\omega )={\frac {A}{\wp '(\omega )}}} {\displaystyle f(\omega )=\wp (\omega )} where {\displaystyle A} is a constant.[5]
Helicatenoid
[edit ]Choosing the functions {\displaystyle f(\omega )=e^{-i\alpha }e^{\omega /A}} and {\displaystyle g(\omega )=e^{-\omega /A}}, a one parameter family of minimal surfaces is obtained.
{\displaystyle \varphi _{1}=e^{-i\alpha }\sinh \left({\frac {\omega }{A}}\right)} {\displaystyle \varphi _{2}=ie^{-i\alpha }\cosh \left({\frac {\omega }{A}}\right)} {\displaystyle \varphi _{3}=e^{-i\alpha }} {\displaystyle \mathbf {X} (\omega )=\operatorname {Re} {\begin{bmatrix}e^{-i\alpha }A\cosh \left({\frac {\omega }{A}}\right)\\ie^{-i\alpha }A\sinh \left({\frac {\omega }{A}}\right)\\e^{-i\alpha }\omega \\\end{bmatrix}}=\cos(\alpha ){\begin{bmatrix}A\cosh \left({\frac {\operatorname {Re} (\omega )}{A}}\right)\cos \left({\frac {\operatorname {Im} (\omega )}{A}}\right)\\-A\cosh \left({\frac {\operatorname {Re} (\omega )}{A}}\right)\sin \left({\frac {\operatorname {Im} (\omega )}{A}}\right)\\\operatorname {Re} (\omega )\\\end{bmatrix}}+\sin(\alpha ){\begin{bmatrix}A\sinh \left({\frac {\operatorname {Re} (\omega )}{A}}\right)\sin \left({\frac {\operatorname {Im} (\omega )}{A}}\right)\\A\sinh \left({\frac {\operatorname {Re} (\omega )}{A}}\right)\cos \left({\frac {\operatorname {Im} (\omega )}{A}}\right)\\\operatorname {Im} (\omega )\\\end{bmatrix}}}
Choosing the parameters of the surface as {\displaystyle \omega =s+i(A\phi )}: {\displaystyle \mathbf {X} (s,\phi )=\cos(\alpha ){\begin{bmatrix}A\cosh \left({\frac {s}{A}}\right)\cos \left(\phi \right)\\-A\cosh \left({\frac {s}{A}}\right)\sin \left(\phi \right)\\s\\\end{bmatrix}}+\sin(\alpha ){\begin{bmatrix}A\sinh \left({\frac {s}{A}}\right)\sin \left(\phi \right)\\A\sinh \left({\frac {s}{A}}\right)\cos \left(\phi \right)\\A\phi \\\end{bmatrix}}}
At the extremes, the surface is a catenoid {\displaystyle (\alpha =0)} or a helicoid {\displaystyle (\alpha =\pi /2)}. Otherwise, {\displaystyle \alpha } represents a mixing angle. The resulting surface, with domain chosen to prevent self-intersection, is a catenary rotated around the {\displaystyle \mathbf {X} _{3}} axis in a helical fashion.
Lines of curvature
[edit ]One can rewrite each element of second fundamental matrix as a function of {\displaystyle f} and {\displaystyle g}, for example {\textstyle \mathbf {X_{uu}} \cdot \mathbf {\hat {n}} ={\frac {1}{|g|^{2}+1}}{\begin{bmatrix}\operatorname {Re} \left((1-g^{2})f'-2gfg'\right)\\\operatorname {Re} \left((1+g^{2})f'i+2gfg'i\right)\\\operatorname {Re} \left(2gf'+2fg'\right)\\\end{bmatrix}}\cdot {\begin{bmatrix}\operatorname {Re} \left(2g\right)\\\operatorname {Re} \left(-2gi\right)\\\operatorname {Re} \left(|g|^{2}-1\right)\\\end{bmatrix}}=-2\operatorname {Re} (fg')}
And consequently the second fundamental form matrix can be simplified as {\displaystyle {\begin{bmatrix}-\operatorname {Re} fg'&\;\;\operatorname {Im} fg'\\\operatorname {Im} fg'&\;\;\operatorname {Re} fg'\end{bmatrix}}}
One of its eigenvectors is {\displaystyle {\overline {\sqrt {fg'}}}} which represents the principal direction in the complex domain.[6] Therefore, the two principal directions in the {\displaystyle uv} space turn out to be {\displaystyle \phi =-{\frac {1}{2}}\operatorname {Arg} (fg')\pm k\pi /2}
See also
[edit ]- Associate family
- Bryant surface, found by an analogous parameterization in hyperbolic space
References
[edit ]- ^ Dierkes, U.; Hildebrandt, S.; Küster, A.; Wohlrab, O. (1992). Minimal surfaces. Vol. I. Springer. p. 108. ISBN 3-540-53169-6.
- ^ Andersson, S.; Hyde, S. T.; Larsson, K.; Lidin, S. (1988). "Minimal Surfaces and Structures: From Inorganic and Metal Crystals to Cell Membranes and Biopolymers". Chem. Rev. 88 (1): 221–242. doi:10.1021/cr00083a011.
- ^ Sharma, R. (2012). "The Weierstrass Representation always gives a minimal surface". arXiv:1208.5689 [math.DG].
- ^ Lawden, D. F. (2011). Elliptic Functions and Applications. Applied Mathematical Sciences. Vol. 80. Berlin: Springer. ISBN 978-1-4419-3090-3.
- ^ Abbena, E.; Salamon, S.; Gray, A. (2006). "Minimal Surfaces via Complex Variables". Modern Differential Geometry of Curves and Surfaces with Mathematica. Boca Raton: CRC Press. pp. 719–766. ISBN 1-58488-448-7.
- ^ Hua, H.; Jia, T. (2018). "Wire cut of double-sided minimal surfaces". The Visual Computer. 34 (6–8): 985–995. doi:10.1007/s00371-018-1548-0. S2CID 13681681.