Jump to content
Wikipedia The Free Encyclopedia

Weierstrass–Enneper parameterization

From Wikipedia, the free encyclopedia
Construction for minimal surfaces

In mathematics, the Weierstrass–Enneper parameterization of minimal surfaces is a classical piece of differential geometry.

Alfred Enneper and Karl Weierstrass studied minimal surfaces as far back as 1863.

Weierstrass parameterization facilities fabrication of periodic minimal surfaces

Let f {\displaystyle f} {\displaystyle f} and g {\displaystyle g} {\displaystyle g} be functions on either the entire complex plane or the unit disk, where g {\displaystyle g} {\displaystyle g} is meromorphic and f {\displaystyle f} {\displaystyle f} is analytic, such that wherever g {\displaystyle g} {\displaystyle g} has a pole of order m {\displaystyle m} {\displaystyle m}, f {\displaystyle f} {\displaystyle f} has a zero of order 2 m {\displaystyle 2m} {\displaystyle 2m} (or equivalently, such that the product f g 2 {\displaystyle fg^{2}} {\displaystyle fg^{2}} is holomorphic), and let c 1 , c 2 , c 3 {\displaystyle c_{1},c_{2},c_{3}} {\displaystyle c_{1},c_{2},c_{3}} be constants. Then the surface with coordinates ( x 1 , x 2 , x 3 ) {\displaystyle (x_{1},x_{2},x_{3})} {\displaystyle (x_{1},x_{2},x_{3})} is minimal, where the x k {\displaystyle x_{k}} {\displaystyle x_{k}} are defined using the real part of a complex integral, as follows: x k ( ζ ) = R e { 0 ζ φ k ( z ) d z } + c k , k = 1 , 2 , 3 φ 1 = f ( 1 g 2 ) / 2 φ 2 = i f ( 1 + g 2 ) / 2 φ 3 = f g {\displaystyle {\begin{aligned}x_{k}(\zeta )&{}=\mathrm {Re} \left\{\int _{0}^{\zeta }\varphi _{k}(z),円dz\right\}+c_{k},\qquad k=1,2,3\\\varphi _{1}&{}=f(1-g^{2})/2\\\varphi _{2}&{}=if(1+g^{2})/2\\\varphi _{3}&{}=fg\end{aligned}}} {\displaystyle {\begin{aligned}x_{k}(\zeta )&{}=\mathrm {Re} \left\{\int _{0}^{\zeta }\varphi _{k}(z),円dz\right\}+c_{k},\qquad k=1,2,3\\\varphi _{1}&{}=f(1-g^{2})/2\\\varphi _{2}&{}=if(1+g^{2})/2\\\varphi _{3}&{}=fg\end{aligned}}}

The converse is also true: every nonplanar minimal surface defined over a simply connected domain can be given a parametrization of this type.[1]

For example, Enneper's surface has f(z) = 1, g(z) = zm.

Parametric surface of complex variables

[edit ]

The Weierstrass-Enneper model defines a minimal surface X {\displaystyle X} {\displaystyle X} ( R 3 {\displaystyle \mathbb {R} ^{3}} {\displaystyle \mathbb {R} ^{3}}) on a complex plane ( C {\displaystyle \mathbb {C} } {\displaystyle \mathbb {C} }). Let ω = u + v i {\displaystyle \omega =u+vi} {\displaystyle \omega =u+vi} (the complex plane as the u v {\displaystyle uv} {\displaystyle uv} space), the Jacobian matrix of the surface can be written as a column of complex entries: J = [ ( 1 g 2 ( ω ) ) f ( ω ) i ( 1 + g 2 ( ω ) ) f ( ω ) 2 g ( ω ) f ( ω ) ] {\displaystyle \mathbf {J} ={\begin{bmatrix}\left(1-g^{2}(\omega )\right)f(\omega )\\i\left(1+g^{2}(\omega )\right)f(\omega )\2円g(\omega )f(\omega )\end{bmatrix}}} {\displaystyle \mathbf {J} ={\begin{bmatrix}\left(1-g^{2}(\omega )\right)f(\omega )\\i\left(1+g^{2}(\omega )\right)f(\omega )\2円g(\omega )f(\omega )\end{bmatrix}}} where f ( ω ) {\displaystyle f(\omega )} {\displaystyle f(\omega )} and g ( ω ) {\displaystyle g(\omega )} {\displaystyle g(\omega )} are holomorphic functions of ω {\displaystyle \omega } {\displaystyle \omega }.

The Jacobian J {\displaystyle \mathbf {J} } {\displaystyle \mathbf {J} } represents the two orthogonal tangent vectors of the surface:[2] X u = [ Re J 1 Re J 2 Re J 3 ] X v = [ Im J 1 Im J 2 Im J 3 ] {\displaystyle \mathbf {X_{u}} ={\begin{bmatrix}\operatorname {Re} \mathbf {J} _{1}\\\operatorname {Re} \mathbf {J} _{2}\\\operatorname {Re} \mathbf {J} _{3}\end{bmatrix}}\;\;\;\;\mathbf {X_{v}} ={\begin{bmatrix}-\operatorname {Im} \mathbf {J} _{1}\\-\operatorname {Im} \mathbf {J} _{2}\\-\operatorname {Im} \mathbf {J} _{3}\end{bmatrix}}} {\displaystyle \mathbf {X_{u}} ={\begin{bmatrix}\operatorname {Re} \mathbf {J} _{1}\\\operatorname {Re} \mathbf {J} _{2}\\\operatorname {Re} \mathbf {J} _{3}\end{bmatrix}}\;\;\;\;\mathbf {X_{v}} ={\begin{bmatrix}-\operatorname {Im} \mathbf {J} _{1}\\-\operatorname {Im} \mathbf {J} _{2}\\-\operatorname {Im} \mathbf {J} _{3}\end{bmatrix}}}

The surface normal is given by n ^ = X u × X v | X u × X v | = 1 | g | 2 + 1 [ 2 Re g 2 Im g | g | 2 1 ] {\displaystyle \mathbf {\hat {n}} ={\frac {\mathbf {X_{u}} \times \mathbf {X_{v}} }{|\mathbf {X_{u}} \times \mathbf {X_{v}} |}}={\frac {1}{|g|^{2}+1}}{\begin{bmatrix}2\operatorname {Re} g\2円\operatorname {Im} g\\|g|^{2}-1\end{bmatrix}}} {\displaystyle \mathbf {\hat {n}} ={\frac {\mathbf {X_{u}} \times \mathbf {X_{v}} }{|\mathbf {X_{u}} \times \mathbf {X_{v}} |}}={\frac {1}{|g|^{2}+1}}{\begin{bmatrix}2\operatorname {Re} g\2円\operatorname {Im} g\\|g|^{2}-1\end{bmatrix}}}

The Jacobian J {\displaystyle \mathbf {J} } {\displaystyle \mathbf {J} } leads to a number of important properties: X u X v = 0 {\displaystyle \mathbf {X_{u}} \cdot \mathbf {X_{v}} =0} {\displaystyle \mathbf {X_{u}} \cdot \mathbf {X_{v}} =0}, X u 2 = Re ( J 2 ) {\displaystyle \mathbf {X_{u}} ^{2}=\operatorname {Re} (\mathbf {J} ^{2})} {\displaystyle \mathbf {X_{u}} ^{2}=\operatorname {Re} (\mathbf {J} ^{2})}, X v 2 = Im ( J 2 ) {\displaystyle \mathbf {X_{v}} ^{2}=\operatorname {Im} (\mathbf {J} ^{2})} {\displaystyle \mathbf {X_{v}} ^{2}=\operatorname {Im} (\mathbf {J} ^{2})}, X u u + X v v = 0 {\displaystyle \mathbf {X_{uu}} +\mathbf {X_{vv}} =0} {\displaystyle \mathbf {X_{uu}} +\mathbf {X_{vv}} =0}. The proofs can be found in Sharma's essay: The Weierstrass representation always gives a minimal surface.[3] The derivatives can be used to construct the first fundamental form matrix: [ X u X u X u X v X v X u X v X v ] = [ 1 0 0 1 ] {\displaystyle {\begin{bmatrix}\mathbf {X_{u}} \cdot \mathbf {X_{u}} &\;\;\mathbf {X_{u}} \cdot \mathbf {X_{v}} \\\mathbf {X_{v}} \cdot \mathbf {X_{u}} &\;\;\mathbf {X_{v}} \cdot \mathbf {X_{v}} \end{bmatrix}}={\begin{bmatrix}1&0\0円&1\end{bmatrix}}} {\displaystyle {\begin{bmatrix}\mathbf {X_{u}} \cdot \mathbf {X_{u}} &\;\;\mathbf {X_{u}} \cdot \mathbf {X_{v}} \\\mathbf {X_{v}} \cdot \mathbf {X_{u}} &\;\;\mathbf {X_{v}} \cdot \mathbf {X_{v}} \end{bmatrix}}={\begin{bmatrix}1&0\0円&1\end{bmatrix}}}

and the second fundamental form matrix [ X u u n ^ X u v n ^ X v u n ^ X v v n ^ ] {\displaystyle {\begin{bmatrix}\mathbf {X_{uu}} \cdot \mathbf {\hat {n}} &\;\;\mathbf {X_{uv}} \cdot \mathbf {\hat {n}} \\\mathbf {X_{vu}} \cdot \mathbf {\hat {n}} &\;\;\mathbf {X_{vv}} \cdot \mathbf {\hat {n}} \end{bmatrix}}} {\displaystyle {\begin{bmatrix}\mathbf {X_{uu}} \cdot \mathbf {\hat {n}} &\;\;\mathbf {X_{uv}} \cdot \mathbf {\hat {n}} \\\mathbf {X_{vu}} \cdot \mathbf {\hat {n}} &\;\;\mathbf {X_{vv}} \cdot \mathbf {\hat {n}} \end{bmatrix}}}

Finally, a point ω t {\displaystyle \omega _{t}} {\displaystyle \omega _{t}} on the complex plane maps to a point X {\displaystyle \mathbf {X} } {\displaystyle \mathbf {X} } on the minimal surface in R 3 {\displaystyle \mathbb {R} ^{3}} {\displaystyle \mathbb {R} ^{3}} by X = [ Re ω 0 ω t J 1 d ω Re ω 0 ω t J 2 d ω Re ω 0 ω t J 3 d ω ] {\displaystyle \mathbf {X} ={\begin{bmatrix}\operatorname {Re} \int _{\omega _{0}}^{\omega _{t}}\mathbf {J} _{1}d\omega \\\operatorname {Re} \int _{\omega _{0}}^{\omega _{t}}\mathbf {J} _{2}d\omega \\\operatorname {Re} \int _{\omega _{0}}^{\omega _{t}}\mathbf {J} _{3}d\omega \end{bmatrix}}} {\displaystyle \mathbf {X} ={\begin{bmatrix}\operatorname {Re} \int _{\omega _{0}}^{\omega _{t}}\mathbf {J} _{1}d\omega \\\operatorname {Re} \int _{\omega _{0}}^{\omega _{t}}\mathbf {J} _{2}d\omega \\\operatorname {Re} \int _{\omega _{0}}^{\omega _{t}}\mathbf {J} _{3}d\omega \end{bmatrix}}} where ω 0 = 0 {\displaystyle \omega _{0}=0} {\displaystyle \omega _{0}=0} for all minimal surfaces throughout this paper except for Costa's minimal surface where ω 0 = ( 1 + i ) / 2 {\displaystyle \omega _{0}=(1+i)/2} {\displaystyle \omega _{0}=(1+i)/2}.

Embedded minimal surfaces and examples

[edit ]

The classical examples of embedded complete minimal surfaces in R 3 {\displaystyle \mathbb {R} ^{3}} {\displaystyle \mathbb {R} ^{3}} with finite topology include the plane, the catenoid, the helicoid, and the Costa's minimal surface. Costa's surface involves Weierstrass's elliptic function {\displaystyle \wp } {\displaystyle \wp }:[4] g ( ω ) = A ( ω ) {\displaystyle g(\omega )={\frac {A}{\wp '(\omega )}}} {\displaystyle g(\omega )={\frac {A}{\wp '(\omega )}}} f ( ω ) = ( ω ) {\displaystyle f(\omega )=\wp (\omega )} {\displaystyle f(\omega )=\wp (\omega )} where A {\displaystyle A} {\displaystyle A} is a constant.[5]

Helicatenoid

[edit ]

Choosing the functions f ( ω ) = e i α e ω / A {\displaystyle f(\omega )=e^{-i\alpha }e^{\omega /A}} {\displaystyle f(\omega )=e^{-i\alpha }e^{\omega /A}} and g ( ω ) = e ω / A {\displaystyle g(\omega )=e^{-\omega /A}} {\displaystyle g(\omega )=e^{-\omega /A}}, a one parameter family of minimal surfaces is obtained.

φ 1 = e i α sinh ( ω A ) {\displaystyle \varphi _{1}=e^{-i\alpha }\sinh \left({\frac {\omega }{A}}\right)} {\displaystyle \varphi _{1}=e^{-i\alpha }\sinh \left({\frac {\omega }{A}}\right)} φ 2 = i e i α cosh ( ω A ) {\displaystyle \varphi _{2}=ie^{-i\alpha }\cosh \left({\frac {\omega }{A}}\right)} {\displaystyle \varphi _{2}=ie^{-i\alpha }\cosh \left({\frac {\omega }{A}}\right)} φ 3 = e i α {\displaystyle \varphi _{3}=e^{-i\alpha }} {\displaystyle \varphi _{3}=e^{-i\alpha }} X ( ω ) = Re [ e i α A cosh ( ω A ) i e i α A sinh ( ω A ) e i α ω ] = cos ( α ) [ A cosh ( Re ( ω ) A ) cos ( Im ( ω ) A ) A cosh ( Re ( ω ) A ) sin ( Im ( ω ) A ) Re ( ω ) ] + sin ( α ) [ A sinh ( Re ( ω ) A ) sin ( Im ( ω ) A ) A sinh ( Re ( ω ) A ) cos ( Im ( ω ) A ) Im ( ω ) ] {\displaystyle \mathbf {X} (\omega )=\operatorname {Re} {\begin{bmatrix}e^{-i\alpha }A\cosh \left({\frac {\omega }{A}}\right)\\ie^{-i\alpha }A\sinh \left({\frac {\omega }{A}}\right)\\e^{-i\alpha }\omega \\\end{bmatrix}}=\cos(\alpha ){\begin{bmatrix}A\cosh \left({\frac {\operatorname {Re} (\omega )}{A}}\right)\cos \left({\frac {\operatorname {Im} (\omega )}{A}}\right)\\-A\cosh \left({\frac {\operatorname {Re} (\omega )}{A}}\right)\sin \left({\frac {\operatorname {Im} (\omega )}{A}}\right)\\\operatorname {Re} (\omega )\\\end{bmatrix}}+\sin(\alpha ){\begin{bmatrix}A\sinh \left({\frac {\operatorname {Re} (\omega )}{A}}\right)\sin \left({\frac {\operatorname {Im} (\omega )}{A}}\right)\\A\sinh \left({\frac {\operatorname {Re} (\omega )}{A}}\right)\cos \left({\frac {\operatorname {Im} (\omega )}{A}}\right)\\\operatorname {Im} (\omega )\\\end{bmatrix}}} {\displaystyle \mathbf {X} (\omega )=\operatorname {Re} {\begin{bmatrix}e^{-i\alpha }A\cosh \left({\frac {\omega }{A}}\right)\\ie^{-i\alpha }A\sinh \left({\frac {\omega }{A}}\right)\\e^{-i\alpha }\omega \\\end{bmatrix}}=\cos(\alpha ){\begin{bmatrix}A\cosh \left({\frac {\operatorname {Re} (\omega )}{A}}\right)\cos \left({\frac {\operatorname {Im} (\omega )}{A}}\right)\\-A\cosh \left({\frac {\operatorname {Re} (\omega )}{A}}\right)\sin \left({\frac {\operatorname {Im} (\omega )}{A}}\right)\\\operatorname {Re} (\omega )\\\end{bmatrix}}+\sin(\alpha ){\begin{bmatrix}A\sinh \left({\frac {\operatorname {Re} (\omega )}{A}}\right)\sin \left({\frac {\operatorname {Im} (\omega )}{A}}\right)\\A\sinh \left({\frac {\operatorname {Re} (\omega )}{A}}\right)\cos \left({\frac {\operatorname {Im} (\omega )}{A}}\right)\\\operatorname {Im} (\omega )\\\end{bmatrix}}}

Choosing the parameters of the surface as ω = s + i ( A ϕ ) {\displaystyle \omega =s+i(A\phi )} {\displaystyle \omega =s+i(A\phi )}: X ( s , ϕ ) = cos ( α ) [ A cosh ( s A ) cos ( ϕ ) A cosh ( s A ) sin ( ϕ ) s ] + sin ( α ) [ A sinh ( s A ) sin ( ϕ ) A sinh ( s A ) cos ( ϕ ) A ϕ ] {\displaystyle \mathbf {X} (s,\phi )=\cos(\alpha ){\begin{bmatrix}A\cosh \left({\frac {s}{A}}\right)\cos \left(\phi \right)\\-A\cosh \left({\frac {s}{A}}\right)\sin \left(\phi \right)\\s\\\end{bmatrix}}+\sin(\alpha ){\begin{bmatrix}A\sinh \left({\frac {s}{A}}\right)\sin \left(\phi \right)\\A\sinh \left({\frac {s}{A}}\right)\cos \left(\phi \right)\\A\phi \\\end{bmatrix}}} {\displaystyle \mathbf {X} (s,\phi )=\cos(\alpha ){\begin{bmatrix}A\cosh \left({\frac {s}{A}}\right)\cos \left(\phi \right)\\-A\cosh \left({\frac {s}{A}}\right)\sin \left(\phi \right)\\s\\\end{bmatrix}}+\sin(\alpha ){\begin{bmatrix}A\sinh \left({\frac {s}{A}}\right)\sin \left(\phi \right)\\A\sinh \left({\frac {s}{A}}\right)\cos \left(\phi \right)\\A\phi \\\end{bmatrix}}}

At the extremes, the surface is a catenoid ( α = 0 ) {\displaystyle (\alpha =0)} {\displaystyle (\alpha =0)} or a helicoid ( α = π / 2 ) {\displaystyle (\alpha =\pi /2)} {\displaystyle (\alpha =\pi /2)}. Otherwise, α {\displaystyle \alpha } {\displaystyle \alpha } represents a mixing angle. The resulting surface, with domain chosen to prevent self-intersection, is a catenary rotated around the X 3 {\displaystyle \mathbf {X} _{3}} {\displaystyle \mathbf {X} _{3}} axis in a helical fashion.

A catenary that spans periodic points on a helix, subsequently rotated along the helix to produce a minimal surface.
The fundamental domain (C) and the 3D surfaces. The continuous surfaces are made of copies of the fundamental patch (R3)

Lines of curvature

[edit ]

One can rewrite each element of second fundamental matrix as a function of f {\displaystyle f} {\displaystyle f} and g {\displaystyle g} {\displaystyle g}, for example X u u n ^ = 1 | g | 2 + 1 [ Re ( ( 1 g 2 ) f 2 g f g ) Re ( ( 1 + g 2 ) f i + 2 g f g i ) Re ( 2 g f + 2 f g ) ] [ Re ( 2 g ) Re ( 2 g i ) Re ( | g | 2 1 ) ] = 2 Re ( f g ) {\textstyle \mathbf {X_{uu}} \cdot \mathbf {\hat {n}} ={\frac {1}{|g|^{2}+1}}{\begin{bmatrix}\operatorname {Re} \left((1-g^{2})f'-2gfg'\right)\\\operatorname {Re} \left((1+g^{2})f'i+2gfg'i\right)\\\operatorname {Re} \left(2gf'+2fg'\right)\\\end{bmatrix}}\cdot {\begin{bmatrix}\operatorname {Re} \left(2g\right)\\\operatorname {Re} \left(-2gi\right)\\\operatorname {Re} \left(|g|^{2}-1\right)\\\end{bmatrix}}=-2\operatorname {Re} (fg')} {\textstyle \mathbf {X_{uu}} \cdot \mathbf {\hat {n}} ={\frac {1}{|g|^{2}+1}}{\begin{bmatrix}\operatorname {Re} \left((1-g^{2})f'-2gfg'\right)\\\operatorname {Re} \left((1+g^{2})f'i+2gfg'i\right)\\\operatorname {Re} \left(2gf'+2fg'\right)\\\end{bmatrix}}\cdot {\begin{bmatrix}\operatorname {Re} \left(2g\right)\\\operatorname {Re} \left(-2gi\right)\\\operatorname {Re} \left(|g|^{2}-1\right)\\\end{bmatrix}}=-2\operatorname {Re} (fg')}

And consequently the second fundamental form matrix can be simplified as [ Re f g Im f g Im f g Re f g ] {\displaystyle {\begin{bmatrix}-\operatorname {Re} fg'&\;\;\operatorname {Im} fg'\\\operatorname {Im} fg'&\;\;\operatorname {Re} fg'\end{bmatrix}}} {\displaystyle {\begin{bmatrix}-\operatorname {Re} fg'&\;\;\operatorname {Im} fg'\\\operatorname {Im} fg'&\;\;\operatorname {Re} fg'\end{bmatrix}}}

Lines of curvature make a quadrangulation of the domain

One of its eigenvectors is f g ¯ {\displaystyle {\overline {\sqrt {fg'}}}} {\displaystyle {\overline {\sqrt {fg'}}}} which represents the principal direction in the complex domain.[6] Therefore, the two principal directions in the u v {\displaystyle uv} {\displaystyle uv} space turn out to be ϕ = 1 2 Arg ( f g ) ± k π / 2 {\displaystyle \phi =-{\frac {1}{2}}\operatorname {Arg} (fg')\pm k\pi /2} {\displaystyle \phi =-{\frac {1}{2}}\operatorname {Arg} (fg')\pm k\pi /2}

See also

[edit ]

References

[edit ]
  1. ^ Dierkes, U.; Hildebrandt, S.; Küster, A.; Wohlrab, O. (1992). Minimal surfaces. Vol. I. Springer. p. 108. ISBN 3-540-53169-6.
  2. ^ Andersson, S.; Hyde, S. T.; Larsson, K.; Lidin, S. (1988). "Minimal Surfaces and Structures: From Inorganic and Metal Crystals to Cell Membranes and Biopolymers". Chem. Rev. 88 (1): 221–242. doi:10.1021/cr00083a011.
  3. ^ Sharma, R. (2012). "The Weierstrass Representation always gives a minimal surface". arXiv:1208.5689 [math.DG].
  4. ^ Lawden, D. F. (2011). Elliptic Functions and Applications. Applied Mathematical Sciences. Vol. 80. Berlin: Springer. ISBN 978-1-4419-3090-3.
  5. ^ Abbena, E.; Salamon, S.; Gray, A. (2006). "Minimal Surfaces via Complex Variables". Modern Differential Geometry of Curves and Surfaces with Mathematica. Boca Raton: CRC Press. pp. 719–766. ISBN 1-58488-448-7.
  6. ^ Hua, H.; Jia, T. (2018). "Wire cut of double-sided minimal surfaces". The Visual Computer. 34 (6–8): 985–995. doi:10.1007/s00371-018-1548-0. S2CID 13681681.

AltStyle によって変換されたページ (->オリジナル) /