Jump to content
Wikipedia The Free Encyclopedia

Unit function

From Wikipedia, the free encyclopedia

In number theory, the unit function is a completely multiplicative function on the positive integers defined as:

ε ( n ) = { 1 , if  n = 1 0 , if  n 1 {\displaystyle \varepsilon (n)={\begin{cases}1,&{\mbox{if }}n=1\0,円&{\mbox{if }}n\neq 1\end{cases}}} {\displaystyle \varepsilon (n)={\begin{cases}1,&{\mbox{if }}n=1\0,円&{\mbox{if }}n\neq 1\end{cases}}}

It is called the unit function because it is the identity element for Dirichlet convolution.[1]

It may be described as the "indicator function of 1" within the set of positive integers. It is also written as u ( n ) {\displaystyle u(n)} {\displaystyle u(n)} (not to be confused with μ ( n ) {\displaystyle \mu (n)} {\displaystyle \mu (n)}, which generally denotes the Möbius function).

See also

[edit ]

References

[edit ]
  1. ^ Estrada, Ricardo (1995), "Dirichlet convolution inverses and solution of integral equations", Journal of Integral Equations and Applications, 7 (2): 159–166, doi:10.1216/jiea/1181075867 , MR 1355233 .


Stub icon

This number theory-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /