Jump to content
Wikipedia The Free Encyclopedia

Truncated power function

From Wikipedia, the free encyclopedia

In mathematics, the truncated power function[1] with exponent n {\displaystyle n} {\displaystyle n} is defined as

x + n = { x n :   x > 0 0 :   x 0. {\displaystyle x_{+}^{n}={\begin{cases}x^{n}&:\ x>0\0円&:\ x\leq 0.\end{cases}}} {\displaystyle x_{+}^{n}={\begin{cases}x^{n}&:\ x>0\0円&:\ x\leq 0.\end{cases}}}

In particular,

x + = { x :   x > 0 0 :   x 0. {\displaystyle x_{+}={\begin{cases}x&:\ x>0\0円&:\ x\leq 0.\end{cases}}} {\displaystyle x_{+}={\begin{cases}x&:\ x>0\0円&:\ x\leq 0.\end{cases}}}

and interpret the exponent as conventional power.

Relations

[edit ]
  • Truncated power functions can be used for construction of B-splines.
  • x x + 0 {\displaystyle x\mapsto x_{+}^{0}} {\displaystyle x\mapsto x_{+}^{0}} is the Heaviside function.
  • χ [ a , b ) ( x ) = ( b x ) + 0 ( a x ) + 0 {\displaystyle \chi _{[a,b)}(x)=(b-x)_{+}^{0}-(a-x)_{+}^{0}} {\displaystyle \chi _{[a,b)}(x)=(b-x)_{+}^{0}-(a-x)_{+}^{0}} where χ {\displaystyle \chi } {\displaystyle \chi } is the indicator function.
  • Truncated power functions are refinable.

See also

[edit ]
[edit ]

References

[edit ]
  1. ^ Massopust, Peter (2010). Interpolation and Approximation with Splines and Fractals. Oxford University Press, USA. p. 46. ISBN 978-0-19-533654-2.

AltStyle によって変換されたページ (->オリジナル) /