Jump to content
Wikipedia The Free Encyclopedia

Triangular array

From Wikipedia, the free encyclopedia
Numbers arranged in a triangle
Not to be confused with Triangular matrix.
The triangular array whose right-hand diagonal sequence consists of Bell numbers

In mathematics and computing, a triangular array of numbers, polynomials, or the like, is a doubly indexed sequence in which each row is only as long as the row's own index. That is, the ith row contains only i elements.

Examples

[edit ]

Notable particular examples include these:

Triangular arrays of integers in which each row is symmetric and begins and ends with 1 are sometimes called generalized Pascal triangles; examples include Pascal's triangle, the Narayana numbers, and the triangle of Eulerian numbers.[9]

Generalizations

[edit ]

Triangular arrays may list mathematical values other than numbers; for instance the Bell polynomials form a triangular array in which each array entry is a polynomial.[10]

Arrays in which the length of each row grows as a linear function of the row number (rather than being equal to the row number) have also been considered.[11]

Applications

[edit ]

Romberg's method can be used to estimate the value of a definite integral by completing the values in a triangle of numbers.[12]

The Boustrophedon transform uses a triangular array to transform one integer sequence into another.[13]

In general, a triangular array is used to store any table indexed by two natural numbers where ji.

Indexing

[edit ]

Storing a triangular array in a computer requires a mapping from the two-dimensional coordinates (ij) to a linear memory address. If two triangular arrays of equal size are to be stored (such as in LU decomposition), they can be combined into a standard rectangular array. If there is only one array, or it must be easily appended to, the array may be stored where row i begins at the ith triangular number Ti. Just like a rectangular array, one multiplication is required to find the start of the row, but this multiplication is of two variables (i*(i+1)/2), so some optimizations such as using a sequence of shifts and adds are not available.

See also

[edit ]

References

[edit ]
  1. ^ Shallit, Jeffrey (1980), "A triangle for the Bell numbers" (PDF), in Hoggatt, Verner E. Jr.; Bicknell-Johnson, Marjorie (eds.), A collection of manuscripts related to the Fibonacci sequence, Santa Clara, Calif.: Fibonacci Association, pp. 69–71, MR 0624091 .
  2. ^ Kitaev, Sergey; Liese, Jeffrey (2013), "Harmonic numbers, Catalan's triangle and mesh patterns" (PDF), Discrete Mathematics , 313 (14): 1515–1531, arXiv:1209.6423 , doi:10.1016/j.disc.2013年03月01日7, MR 3047390, S2CID 18248485 .
  3. ^ Velleman, Daniel J.; Call, Gregory S. (1995), "Permutations and combination locks", Mathematics Magazine, 68 (4): 243–253, doi:10.1080/0025570X.1995.11996328, JSTOR 2690567, MR 1363707 .
  4. ^ Miller, Philip L.; Miller, Lee W.; Jackson, Purvis M. (1987), Programming by design: a first course in structured programming, Wadsworth Pub. Co., pp. 211–212, ISBN 978-0-534-08244-4 .
  5. ^ Hosoya, Haruo (1976), "Fibonacci triangle", The Fibonacci Quarterly , 14 (2): 173–178, doi:10.1080/00150517.1976.12430575 .
  6. ^ Losanitsch, Sima M. (1897), "Die Isomerie-Arten bei den Homologen der Paraffin-Reihe" [The isomery species of the homologues of the paraffin series], Chem. Ber. (in German), 30 (2): 1917–1926, doi:10.1002/cber.189703002144 .
  7. ^ Barry, Paul (2011), "On a generalization of the Narayana triangle" (PDF), Journal of Integer Sequences, 14 (4) 11.4.5, MR 2792161 .
  8. ^ Edwards, A. W. F. (2002), Pascal's Arithmetical Triangle: The Story of a Mathematical Idea, JHU Press, ISBN 978-0-8018-6946-4 .
  9. ^ Barry, Paul (2006), "On integer-sequence-based constructions of generalized Pascal triangles" (PDF), Journal of Integer Sequences, 9 (2) 6.2.4, Bibcode:2006JIntS...9...24B .
  10. ^ Rota Bulò, Samuel; Hancock, Edwin R.; Aziz, Furqan; Pelillo, Marcello (2012), "Efficient computation of Ihara coefficients using the Bell polynomial recursion", Linear Algebra and Its Applications, 436 (5): 1436–1441, doi:10.1016/j.laa.2011年08月01日7 , MR 2890929 .
  11. ^ Fielder, Daniel C.; Alford, Cecil O. (1991), "Pascal's triangle: Top gun or just one of the gang?", in Bergum, Gerald E.; Philippou, Andreas N.; Horadam, A. F. (eds.), Applications of Fibonacci Numbers (Proceedings of the Fourth International Conference on Fibonacci Numbers and Their Applications, Wake Forest University, N.C., U.S.A., July 30–August 3, 1990), Springer, pp. 77–90, ISBN 9780792313090 .
  12. ^ Thacher Jr., Henry C. (July 1964), "Remark on Algorithm 60: Romberg integration", Communications of the ACM, 7 (7): 420–421, doi:10.1145/364520.364542 , S2CID 29898282 .
  13. ^ Millar, Jessica; Sloane, N. J. A.; Young, Neal E. (1996), "A new operation on sequences: the Boustrouphedon transform", Journal of Combinatorial Theory, Series A, 76 (1): 44–54, arXiv:math.CO/0205218 , doi:10.1006/jcta.1996.0087, S2CID 15637402 .
[edit ]

AltStyle によって変換されたページ (->オリジナル) /